# Path Configuration from tools.preprocess import * # Processing context trait = "Sarcoma" cohort = "GSE142162" # Input paths in_trait_dir = "../DATA/GEO/Sarcoma" in_cohort_dir = "../DATA/GEO/Sarcoma/GSE142162" # Output paths out_data_file = "./output/preprocess/3/Sarcoma/GSE142162.csv" out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE142162.csv" out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE142162.csv" json_path = "./output/preprocess/3/Sarcoma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Based on background info, this is an affymetrix hgu133Plus2 array expression profiling study is_gene_available = True # 2.1 Data Availability and 2.2 Data Type Conversion # Trait data: Can be inferred from tumor type in row 2 trait_row = 2 def convert_trait(x: str) -> int: # Binary: 1 for primary tumor if not isinstance(x, str): return None value = x.split(': ')[1].lower() if ': ' in x else x.lower() if 'primary tumor' in value: return 1 return None # Age data is in row 1 age_row = 1 def convert_age(x: str) -> float: if not isinstance(x, str): return None try: return float(x.split(': ')[1]) except: return None # Gender data is in row 0 gender_row = 0 def convert_gender(x: str) -> int: if not isinstance(x, str): return None value = x.split(': ')[1].lower() if ': ' in x else x.lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_df) print("Clinical data preview:", preview) # Save clinical features clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The identifiers end with "_at" which indicates these are Affymetrix probe IDs # They need to be mapped to gene symbols for downstream analysis requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and values from annotation dataframe print("Gene annotation DataFrame preview:") print(preview_df(gene_annotation)) # 1. ID column contains affymetrix probe IDs ending with "_at" matching gene expression data # Description column contains gene symbols though descriptive mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description') # 3. Convert probe data to gene expression using the mapping gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the mapped gene data print("\nGene expression data preview:") print(gene_data.head()) print("\nShape after mapping:", gene_data.shape) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) print("Gene data shape after normalization:", gene_data.shape) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Load clinical data previously processed selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) print("\nClinical data shape:", selected_clinical_df.shape) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) print("\nLinked data shape:", linked_data.shape) # 3. Handle missing values systematically if trait in linked_data.columns: linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "This dataset contains gene expression data from myxoid liposarcoma samples, with metastasis status as the trait." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: # Handle case where clinical features were not properly extracted note = "Failed to extract clinical trait information from sample characteristics." validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=None, df=None, note=note )