# Path Configuration from tools.preprocess import * # Processing context trait = "Sarcoma" cohort = "GSE162789" # Input paths in_trait_dir = "../DATA/GEO/Sarcoma" in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162789" # Output paths out_data_file = "./output/preprocess/3/Sarcoma/GSE162789.csv" out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE162789.csv" out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE162789.csv" json_path = "./output/preprocess/3/Sarcoma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # Gene expression data availability # Looking at Series title and sample characteristics, this appears to be gene expression data from Ewing sarcoma samples is_gene_available = True # Clinical feature availability and conversion functions # Sample characteristics shows Ewing sarcoma patient data with age and gender info embedded trait_row = 0 # The trait (sarcoma) info is in the 'soft tissue' entries # Age can be extracted from the same entries as trait age_row = 0 # Gender can also be extracted from the same entries gender_row = 0 def convert_trait(value: str) -> int: # Binary: 1 for Ewing sarcoma, 0 for other/control if pd.isna(value): return None value = value.split(': ')[-1].lower() if 'ewing sarcoma' in value: return 1 elif 'cell line' in value: return None # Exclude cell lines return 0 def convert_age(value: str) -> float: # Continuous: Extract age in years if pd.isna(value): return None value = value.split(': ')[-1].lower() if 'cell line' in value: return None try: # Extract number before "year" age = float(re.search(r'(\d+)\s*year', value).group(1)) return age except: return None def convert_gender(value: str) -> int: # Binary: 0 for female, 1 for male if pd.isna(value): return None value = value.split(': ')[-1].lower() if 'cell line' in value: return None if 'female' in value: return 0 elif 'male' in value: return 1 return None # Validate and save cohort info validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # Extract clinical features if trait data is available if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The gene identifiers are probe IDs from the Affymetrix microarray platform, # not human gene symbols. They need to be mapped to gene symbols for analysis. requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure print("Column names and first few values:") print(preview_df(gene_annotation)) print("\nGene annotation information available in 'gene_assignment' column.") # Get gene mapping mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Preview gene data print("Preview of gene expression data:") print(preview_df(gene_data)) # Reload clinical data that was previously processed selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) print("Clinical data shape:", selected_clinical_df.shape) # 1. Normalize gene symbols genetic_data = pd.read_csv(out_gene_data_file, index_col=0) genetic_data = normalize_gene_symbols_in_index(genetic_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) print("\nLinked data shape:", linked_data.shape) # 3. Handle missing values systematically if trait in linked_data.columns: linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "This dataset studies the paired tumor biopsies before and after treatment. The derived trait value 1 represents responders (PR = partial response) and 0 represents non-responders (SD = stable disease, PD = progressive disease)." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: # Handle case where clinical features were not properly extracted note = "Failed to extract clinical trait information from sample characteristics." validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=None, df=None, note=note )