# Path Configuration from tools.preprocess import * # Processing context trait = "Sarcoma" cohort = "GSE233860" # Input paths in_trait_dir = "../DATA/GEO/Sarcoma" in_cohort_dir = "../DATA/GEO/Sarcoma/GSE233860" # Output paths out_data_file = "./output/preprocess/3/Sarcoma/GSE233860.csv" out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE233860.csv" out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE233860.csv" json_path = "./output/preprocess/3/Sarcoma/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes - Series summary mentions "Gene expression quantification of PanCancer IO genes" is_gene_available = True # 2.1 Data Availability and Row Keys trait_row = 0 # The 'outcome' data can be used for trait age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert outcome data to binary (SD/PD=0, PR=1)""" if pd.isna(value): return None value = value.split(': ')[-1].strip() # PR = Partial Response is positive outcome # SD = Stable Disease and PD = Progressive Disease are negative outcomes if value == 'PR': return 1 elif value in ['SD', 'PD']: return 0 return None def convert_age(value): return None # Not used since age data unavailable def convert_gender(value): return None # Not used since gender data unavailable # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data preview = preview_df(selected_clinical_df) print("Preview of clinical data:") print(preview) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Review the gene identifiers gene_ids = ['A2M', 'ABCF1', 'ACVR1C', 'ADAM12', 'ADGRE1', 'ADM', 'ADORA2A', 'AKT1', 'ALDOA', 'ALDOC', 'ANGPT1', 'ANGPT2', 'ANGPTL4', 'ANLN', 'APC', 'APH1B', 'API5', 'APLNR', 'APOE', 'APOL6'] # These look like standard human gene symbols (e.g. A2M, ABCF1, AKT1 etc.) # No mapping needed requires_gene_mapping = False # Reload clinical data that was processed earlier selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(genetic_data) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Dataset contains gene expression data from paired tumor biopsies before and after treatment. Treatment outcome (PR vs SD/PD) is used as trait." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)