# Path Configuration from tools.preprocess import * # Processing context trait = "Schizophrenia" cohort = "GSE165813" # Input paths in_trait_dir = "../DATA/GEO/Schizophrenia" in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE165813" # Output paths out_data_file = "./output/preprocess/3/Schizophrenia/GSE165813.csv" out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE165813.csv" out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE165813.csv" json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes - Affymetrix array data indicated in title is_gene_available = True # 2. Variable Availability and Data Type # Trait (Status) - Not directly available in characteristics # But can be inferred from histological type - fetal/adult brain samples are controls, others are cases trait_row = 1 # Age/Gender not available age_row = None gender_row = None # Conversion Functions def convert_trait(value): if not isinstance(value, str): return None value = value.split(': ')[-1].lower().strip() # Control samples are normal brain tissues if any(x in value for x in ['fetal', 'adult', 'pediatric']): return 0 # Control # Tumor samples elif any(x in value for x in ['astroblastoma', 'ptpr', 'pxa']): return 1 # Case return None def convert_age(value): # Not used since age_row is None return None def convert_gender(value): # Not used since gender_row is None return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) requires_gene_mapping = False # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(genetic_data) print("Gene data shape after normalization:", genetic_data.shape) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) # Load clinical data previously processed selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) print("\nClinical data shape:", selected_clinical_df.shape) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) print("\nLinked data shape:", linked_data.shape) # 3. Handle missing values systematically if trait in linked_data.columns: linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "This dataset contains gene expression data from brain tumor and normal brain samples, with schizophrenia status as the trait." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable and not biased if is_usable and not trait_biased: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: # Handle case where clinical features were not properly extracted note = "Failed to extract clinical trait information from sample characteristics." validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=None, df=None, note=note )