# Path Configuration from tools.preprocess import * # Processing context trait = "Schizophrenia" cohort = "GSE285666" # Input paths in_trait_dir = "../DATA/GEO/Schizophrenia" in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE285666" # Output paths out_data_file = "./output/preprocess/3/Schizophrenia/GSE285666.csv" out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE285666.csv" out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE285666.csv" json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # Gene Expression Data Availability # Yes, according to background info "Exon- and gene-Level transcriptional profiling" and "Expression analysis using Affymetrix Human Exon arrays" is_gene_available = True # Clinical Data Availability and Conversion trait_row = 0 # Found trait info in row 0 "disease state" age_row = None # Age not available gender_row = None # Gender not available def convert_trait(value: str) -> int: """Convert disease state to binary - controls:0, patients:1""" if pd.isna(value) or not isinstance(value, str): return None value = value.split(": ")[-1].lower() if "unaffected" in value or "control" in value: return 0 elif "patient" in value or "williams syndrome" in value: return 1 return None # Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Extract clinical features since trait data is available clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview the processed clinical data print("Preview of clinical data:") print(preview_df(clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # These appear to be numerical probe IDs, not human gene symbols # They will need to be mapped to gene symbols before analysis requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and values from annotation dataframe print("Gene annotation DataFrame preview:") print(preview_df(gene_annotation)) # From observation: 'ID' in gene annotation matches gene identifiers in expression data # 'gene_assignment' contains gene symbols in the format "RefSeq // GeneSymbol // Description" # Get mapping between probes and genes mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the mapped gene data print("Gene expression data preview after mapping:") print(gene_data.head()) print("\nShape:", gene_data.shape) # Save gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) print("Gene data shape after normalization:", gene_data.shape) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Load clinical data previously processed selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) print("\nClinical data shape:", selected_clinical_df.shape) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) print("\nLinked data shape:", linked_data.shape) # 3. Handle missing values systematically if trait in linked_data.columns: linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "This dataset contains gene expression data from myxoid liposarcoma samples, with metastasis status as the trait." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable and not biased if is_usable and not trait_biased: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: # Handle case where clinical features were not properly extracted note = "Failed to extract clinical trait information from sample characteristics." validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=None, df=None, note=note )