# Path Configuration from tools.preprocess import * # Processing context trait = "Sickle_Cell_Anemia" cohort = "GSE46471" # Input paths in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia" in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE46471" # Output paths out_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/GSE46471.csv" out_gene_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/gene_data/GSE46471.csv" out_clinical_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/clinical_data/GSE46471.csv" json_path = "./output/preprocess/3/Sickle_Cell_Anemia/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes, this is a microarray gene expression dataset studying endothelial cells is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # For this specific dataset studying damage pathways in endothelial cells, # all samples are control samples (no disease state), so trait data is not available trait_row = None # No age data available in sample characteristics age_row = None # No gender data available in sample characteristics gender_row = None # 2.2 Data Type Conversion def convert_trait(x): # Not needed since trait data is not available return None def convert_age(x): # Not needed since age data is not available return None def convert_gender(x): # Not needed since gender data is not available return None # 3. Save Metadata # Initial filtering - since trait data is not available (trait_row is None), # is_trait_available should be False validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False ) # 4. Clinical Feature Extraction # Skip this step since trait_row is None, indicating clinical data is not available # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The gene identifiers in the data appear to be just numeric values (1,2,3...), # which are not standard human gene symbols. We need to map these to proper gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and values from annotation dataframe print("Gene annotation DataFrame preview:") print(preview_df(gene_annotation)) # Extract gene identifiers and gene symbols from the annotation data id_col = 'ID' # Gene identifiers in the data are numeric values (1,2,3...) gene_col = 'GENE_SYMBOL' # Gene symbols are stored in GENE_SYMBOL column # Get mapping between gene identifiers and gene symbols mapping_data = get_gene_mapping(gene_annotation, id_col, gene_col) # Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the gene data after mapping print("\nGene expression data after mapping:") print(gene_data.shape) print("\nFirst few genes and their expression values:") print(preview_df(gene_data)) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # Save metadata indicating dataset is not usable due to lack of trait data note = "Dataset contains normalized gene expression data but lacks trait information." validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Set to True since no trait data makes it unusable df=gene_data, # Provide the gene expression data note=note )