# Path Configuration from tools.preprocess import * # Processing context trait = "Sickle_Cell_Anemia" cohort = "GSE84632" # Input paths in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia" in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE84632" # Output paths out_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/GSE84632.csv" out_gene_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/gene_data/GSE84632.csv" out_clinical_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/clinical_data/GSE84632.csv" json_path = "./output/preprocess/3/Sickle_Cell_Anemia/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # The title and summary indicate this is gene expression data from PBMCs # 2.1 Data Availability trait_row = 2 # Disease status in row 2 age_row = None # Age not provided gender_row = None # Gender not provided # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert trait information to binary (0: Control, 1: Case)""" if value is None or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'sickle cell disease' in value: return 1 return None def convert_age(value): """Convert age to float""" return None # Not used since age data not available def convert_gender(value): """Convert gender to binary (0: Female, 1: Male)""" return None # Not used since gender data not available # 3. Save Metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of processed clinical data:") print(preview_df(selected_clinical)) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The gene identifiers appear to be array probe IDs (16650001, etc) rather than human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview the dataframe by looking at column names and first few values print("Gene annotation columns and first few rows:") for col in gene_annotation.columns: print(f"\n{col}:") print(list(gene_annotation[col])[:5]) # Step 1: Extract platform table data from SOFT file - look between !Platform_table_begin and !Platform_table_end platform_table = filter_content_by_prefix( soft_file_path, prefixes_a=['!Platform_table_begin', '!Platform_table_end'], unselect=True, source_type='file', return_df_a=True )[0] # Look at column names to identify probe ID and gene symbol columns print("Platform table columns:") print(platform_table.columns) # Review some sample rows to confirm data format print("\nSample rows:") print(platform_table.head()) # Create mapping using probe ID and gene symbol columns mapping_df = get_gene_mapping(platform_table, 'ID', 'gene_assignment') # Apply mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols to standardized format gene_data = normalize_gene_symbols_in_index(gene_data) print("\nShape of gene expression data after mapping:") print(gene_data.shape) print("\nFirst few gene symbols:") print(list(gene_data.index)[:10]) # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and values from annotation dataframe print("Gene annotation DataFrame preview:") print(preview_df(gene_annotation))