# Path Configuration from tools.preprocess import * # Processing context trait = "Stomach_Cancer" cohort = "GSE146361" # Input paths in_trait_dir = "../DATA/GEO/Stomach_Cancer" in_cohort_dir = "../DATA/GEO/Stomach_Cancer/GSE146361" # Output paths out_data_file = "./output/preprocess/3/Stomach_Cancer/GSE146361.csv" out_gene_data_file = "./output/preprocess/3/Stomach_Cancer/gene_data/GSE146361.csv" out_clinical_data_file = "./output/preprocess/3/Stomach_Cancer/clinical_data/GSE146361.csv" json_path = "./output/preprocess/3/Stomach_Cancer/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # Check gene expression data availability # Yes - it contains gene expression data from HumanHT-12 v3.0 Expression BeadChip array is_gene_available = True # 2.1 Data Availability # All samples are gastric cancer cell lines, no healthy controls, so trait data is not usable trait_row = None # Age and gender are not available for cell lines age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): # Not needed as trait_row is None return None def convert_age(x): # Not needed as age_row is None return None def convert_gender(x): # Not needed as gender_row is None return None # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Skip clinical feature extraction since trait_row is None # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Check identifiers - Looking at the ID format ('ILMN_' prefix), these are Illumina probe IDs and need mapping to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and values from annotation dataframe print("Gene annotation DataFrame preview:") print(preview_df(gene_annotation)) # 1. Identify columns for probe IDs and gene symbols # From examining the data, we need 'ID' and 'Symbol' columns # 'ID' matches the ILMN_ identifiers in the expression data # 'Symbol' contains the gene symbols we want to map to # 2. Get mapping between probe IDs and gene symbols gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Convert probe measurements to gene expression values gene_data = apply_gene_mapping(genetic_data, gene_mapping) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # Since we know there's no trait data (all samples are cancer cell lines), mark as biased trait_biased = True # No control samples makes it inherently biased note = "Dataset contains only cancer cell lines without controls. Gene expression data was preprocessed from probe-level to gene-level using gene symbol normalization with NCBI Gene database." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=trait_biased, df=gene_data, note=note ) # Don't save the linked data since it's not usable for our analysis