# Path Configuration from tools.preprocess import * # Processing context trait = "Stomach_Cancer" cohort = "GSE172197" # Input paths in_trait_dir = "../DATA/GEO/Stomach_Cancer" in_cohort_dir = "../DATA/GEO/Stomach_Cancer/GSE172197" # Output paths out_data_file = "./output/preprocess/3/Stomach_Cancer/GSE172197.csv" out_gene_data_file = "./output/preprocess/3/Stomach_Cancer/gene_data/GSE172197.csv" out_clinical_data_file = "./output/preprocess/3/Stomach_Cancer/clinical_data/GSE172197.csv" json_path = "./output/preprocess/3/Stomach_Cancer/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Based on background info, this dataset contains mRNA expression profiles, so it's suitable is_gene_available = True # 2.1 Data Availability # From the sample characteristics, we don't have trait (cancer/normal), age or gender data # All samples are cancer cell lines, so trait data has only one value (constant) trait_row = None age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): # Not used since trait_row is None return None def convert_age(value): # Not used since age_row is None return None def convert_gender(value): # Not used since gender_row is None return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip since trait_row is None, indicating no clinical data available # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Looking at the identifiers, these are Affymetrix probe IDs (e.g. '1007_s_at', '1053_at') # and need to be mapped to human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and values from annotation dataframe print("Gene annotation DataFrame preview:") print(preview_df(gene_annotation)) # Get gene mapping dataframe from gene annotation data # The column 'ID' stores probe IDs which match the gene expression data indices # The column 'Gene Symbol' stores human gene symbols mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol') # Convert probe-level expression data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview result print("First few rows and columns of mapped gene expression data:") print(gene_data.iloc[:5, :5]) print("\nShape:", gene_data.shape) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2-6. Skip clinical data linking and further processing since we determined there is no usable clinical data # Create a minimal DataFrame with one column to satisfy the validation function requirements df = pd.DataFrame(index=gene_data.columns, columns=['dummy']) # We consider this dataset biased since it only contains cancer cell lines note = "Dataset contains only cancer cell lines. While gene expression data was successfully processed, no trait comparison is possible due to lack of normal samples." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=df, note=note )