# Path Configuration from tools.preprocess import * # Processing context trait = "Stomach_Cancer" cohort = "GSE183136" # Input paths in_trait_dir = "../DATA/GEO/Stomach_Cancer" in_cohort_dir = "../DATA/GEO/Stomach_Cancer/GSE183136" # Output paths out_data_file = "./output/preprocess/3/Stomach_Cancer/GSE183136.csv" out_gene_data_file = "./output/preprocess/3/Stomach_Cancer/gene_data/GSE183136.csv" out_clinical_data_file = "./output/preprocess/3/Stomach_Cancer/clinical_data/GSE183136.csv" json_path = "./output/preprocess/3/Stomach_Cancer/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) print("Background Information:") print(background_info) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # Gene Expression Data Availability is_gene_available = True # Based on Series info mentioning "mRNA expression profiles" # Data Availability Analysis trait_row = 0 # Tumor stage can be used as indicator of stomach cancer severity age_row = 1 # Age data available gender_row = 2 # Gender data available # Data Type Conversion Functions def convert_trait(x): """Convert tumor stage to binary: stages 3-4 -> 1 (severe), stages 1-2 -> 0 (mild)""" if not isinstance(x, str): return None value = x.split(': ')[1] if ': ' in x else x try: stage = int(value) return 1 if stage >= 3 else 0 except: return None def convert_age(x): """Convert age to continuous value""" if not isinstance(x, str): return None value = x.split(': ')[1] if ': ' in x else x try: return float(value) except: return None def convert_gender(x): """Convert gender to binary: Female -> 0, Male -> 1""" if not isinstance(x, str): return None value = x.split(': ')[1] if ': ' in x else x value = value.lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # Initial validation and metadata saving is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # Gene identifiers have the prefix "ILMN_" which indicates they are Illumina BeadArray identifiers # These need to be mapped to standardized gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and values from annotation dataframe print("Gene annotation DataFrame preview:") print(preview_df(gene_annotation)) # Get mapping between probe IDs and gene symbols # 'ID' column matches the probe identifiers in expression data # 'Symbol' column contains the gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Convert probe expression to gene expression by applying the mapping gene_data = apply_gene_mapping(genetic_data, mapping_data) # Normalize gene symbols to standard format and aggregate duplicates gene_data = normalize_gene_symbols_in_index(gene_data) # Preview the processed gene expression data print("\nGenetic data after mapping to gene symbols:") print(gene_data.head()) print("\nShape:", gene_data.shape) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # Load clinical data previously processed selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) print("\nClinical data shape:", selected_clinical_df.shape) # 2. Link clinical and genetic data using normalized gene-level data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) print("\nLinked data shape:", linked_data.shape) # 3. Handle missing values systematically if trait in linked_data.columns: linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable and not biased if is_usable and not trait_biased: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)