# Path Configuration from tools.preprocess import * # Processing context trait = "Stroke" cohort = "GSE125771" # Input paths in_trait_dir = "../DATA/GEO/Stroke" in_cohort_dir = "../DATA/GEO/Stroke/GSE125771" # Output paths out_data_file = "./output/preprocess/3/Stroke/GSE125771.csv" out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE125771.csv" out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE125771.csv" json_path = "./output/preprocess/3/Stroke/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on Series_summary and methods description, this is a gene expression microarray dataset is_gene_available = True # 2.1 Data Availability # Trait: Controls not found - all samples are carotid atherosclerotic plaques from patients with >50% stenosis trait_row = None # Age: Feature 3 contains age data age_row = 3 # Gender: Feature 2 contains sex data gender_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(x): # Not used since trait_row is None return None def convert_age(x): # Extract numeric age value after colon try: age = float(x.split(': ')[1]) return age except: return None def convert_gender(x): # Convert sex to binary (Female=0, Male=1) try: sex = x.split(': ')[1].strip() if sex == 'Female': return 0 elif sex == 'Male': return 1 return None except: return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False # trait_row is None ) # 4. Skip clinical feature extraction since trait_row is None # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The identifiers (e.g. TC01000001.hg.1) appear to be probe IDs from a microarray platform # rather than standard human gene symbols. They need to be mapped to gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview annotation data to identify columns for mapping print("Gene Annotation Preview (first 5 rows):") print(preview_df(gene_metadata)) # From the output we can see: # - 'ID' column contains probe IDs that match our expression data # - 'gene_assignment' column has gene symbol information # We'll use these columns for mapping probe IDs to gene symbols # Keep columns needed for mapping mapping_cols = ['ID', 'gene_assignment'] gene_metadata = gene_metadata[mapping_cols] # Print shape of annotation data print(f"\nShape of gene annotation data: {gene_metadata.shape}") # Extract ID and gene symbol mapping mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment') # Apply mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Print shape and preview data to verify mapping worked print("Shape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Create a minimal DataFrame with gene data and set trait as missing linked_data = pd.DataFrame(index=gene_data.columns) linked_data[trait] = None # Add gene expression data linked_data = pd.concat([linked_data.T, gene_data]).T # Set bias flag for validation trait_biased = True # Missing trait data means it cannot be used for trait analysis # Validate and record dataset info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=trait_biased, df=linked_data, note="Gene expression data available but no stroke phenotype information found in dataset." )