# Path Configuration from tools.preprocess import * # Processing context trait = "Stroke" cohort = "GSE186798" # Input paths in_trait_dir = "../DATA/GEO/Stroke" in_cohort_dir = "../DATA/GEO/Stroke/GSE186798" # Output paths out_data_file = "./output/preprocess/3/Stroke/GSE186798.csv" out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE186798.csv" out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE186798.csv" json_path = "./output/preprocess/3/Stroke/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Based on background info mentioning microarray analysis # 2.1 Data Availability trait_row = 1 # 'condition' row contains stroke/control status gender_row = 0 # 'gender' row contains gender info age_row = None # Age information not available # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() if value == 'Control': return 0 elif value in ['PSND', 'PSD']: # Both are post-stroke cases return 1 return None def convert_gender(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() if value == 'F': return 0 elif value == 'M': return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # From the identifiers visible in the first few rows (e.g., "AFFX-BkGr-GC03_st"), # these appear to be Affymetrix probe IDs rather than standard human gene symbols. # They need to be mapped to their corresponding gene symbols. requires_gene_mapping = True # From looking at the annotation data, we can see this is mouse data (Mus musculus) # rather than human data. This makes the dataset unsuitable for human stroke studies. # Therefore we need to stop processing this cohort. # Save metadata indicating this dataset is not usable validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=False, # Set to False since mouse data can't be used is_trait_available=True, # We did find stroke/control data note="Dataset contains mouse rather than human gene expression data") # Exit further processing as dataset is not suitable print("WARNING: This dataset contains mouse gene expression data rather than human data.") print("Stopping processing as mouse data is not suitable for human stroke studies.")