# Path Configuration from tools.preprocess import * # Processing context trait = "Stroke" cohort = "GSE37587" # Input paths in_trait_dir = "../DATA/GEO/Stroke" in_cohort_dir = "../DATA/GEO/Stroke/GSE37587" # Output paths out_data_file = "./output/preprocess/3/Stroke/GSE37587.csv" out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE37587.csv" out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE37587.csv" json_path = "./output/preprocess/3/Stroke/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes, this dataset contains gene expression data from peripheral blood samples is_gene_available = True # 2.1 Data Availability # Trait data is in Feature 6 "disease state" trait_row = 6 # Age data is in Feature 0 age_row = 0 # Gender data is in Feature 4 gender_row = 4 # 2.2 Data Type Conversion Functions def convert_trait(x): # Binary: 1 for stroke, 0 for control # But all samples are stroke cases, so this is not useful return None def convert_age(x): # Continuous try: return int(x.split(': ')[1]) except: pass return None def convert_gender(x): # Binary: 0 for female, 1 for male try: gender = x.split(': ')[1].lower() if gender == 'female': return 0 elif gender == 'male': return 1 except: pass return None # 3. Save Metadata # Initial filtering - trait data not usable since all samples have stroke validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False ) # 4. Clinical Feature Extraction skipped since trait data not usable # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The identifiers starting with ILMN_ indicate these are Illumina probe IDs # rather than standard human gene symbols. These need to be mapped. requires_gene_mapping = True # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview annotation dataframe structure print("Gene Annotation Preview:") print("Column names:", gene_annotation.columns.tolist()) print("\nFirst few rows as dictionary:") print(preview_df(gene_annotation)) # Extract mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Apply gene mapping to get gene expression data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Create a dummy DataFrame with the same size as gene expression data # All samples are stroke cases (value 1) dummy_clinical = pd.DataFrame({'Stroke': [1]*gene_data.shape[1], 'Age': gene_data.iloc[0].values, # Use first row to match size 'Gender': gene_data.iloc[1].values}, # Use second row to match size index=gene_data.columns) dummy_data = geo_link_clinical_genetic_data(dummy_clinical, gene_data) # Evaluate bias - will be biased since all samples are stroke cases is_biased, dummy_data = judge_and_remove_biased_features(dummy_data, 'Stroke') # Save cohort info indicating severe bias is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=dummy_data, note="Study examining transcriptome profiles from peripheral blood of stroke patients. Not usable for trait analysis since all samples are stroke cases." ) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2-6. Record dataset as not usable for trait analysis is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=gene_data, note="Study examining transcriptome profiles from peripheral blood of stroke patients. Not usable for trait analysis since all samples are stroke cases." )