# Path Configuration from tools.preprocess import * # Processing context trait = "Stroke" cohort = "GSE38571" # Input paths in_trait_dir = "../DATA/GEO/Stroke" in_cohort_dir = "../DATA/GEO/Stroke/GSE38571" # Output paths out_data_file = "./output/preprocess/3/Stroke/GSE38571.csv" out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE38571.csv" out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE38571.csv" json_path = "./output/preprocess/3/Stroke/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Although gene expression data exists, it's for lung cell differentiation, not stroke-related is_gene_available = False # 2.1 Data Availability # No suitable trait data found in characteristics trait_row = None # Only one gender value (all male) so gender is not useful gender_row = None # No age data available age_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): return None # Not used since trait_row is None def convert_age(x): return None # Not used since age_row is None def convert_gender(x): return None # Not used since gender_row is None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Skip clinical feature extraction since trait_row is None