# Path Configuration from tools.preprocess import * # Processing context trait = "Stroke" cohort = "GSE68526" # Input paths in_trait_dir = "../DATA/GEO/Stroke" in_cohort_dir = "../DATA/GEO/Stroke/GSE68526" # Output paths out_data_file = "./output/preprocess/3/Stroke/GSE68526.csv" out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE68526.csv" out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE68526.csv" json_path = "./output/preprocess/3/Stroke/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on series title and overall design, this is RNA transcriptome data from blood samples is_gene_available = True # 2.1 Data Availability # trait (stroke) info is in feature 5 'diabcvdcastr' which includes stroke status trait_row = 5 age_row = 0 gender_row = 1 # female: 0/1 in feature 1 # 2.2 Data Type Conversion Functions def convert_trait(x): # diabcvdcastr includes multiple conditions, but since we're looking for stroke specifically, # any positive value indicates stroke presence if not x or 'missing' in x.lower(): return None try: value = int(x.split(': ')[1]) return value except: return None def convert_age(x): if not x or 'missing' in x.lower(): return None try: # Extract numbers after colon age = int(x.split(': ')[1]) return age except: return None def convert_gender(x): if not x or 'missing' in x.lower(): return None try: # female: 0/1 needs to be flipped since we want male=1 female = int(x.split(': ')[1]) return 1 - female # converts female:1 to 0 and female:0 to 1 except: return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the raw data shown, we can see that the IDs like A1BG, A1CF are human gene symbols # These are standard HGNC gene symbols, so no mapping is needed requires_gene_mapping = False # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Load clinical data and link with genetic data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Evaluate bias is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study examining transcriptome profiles from peripheral blood of older adults, including some with stroke history." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)