# Path Configuration from tools.preprocess import * # Processing context trait = "Telomere_Length" cohort = "GSE16058" # Input paths in_trait_dir = "../DATA/GEO/Telomere_Length" in_cohort_dir = "../DATA/GEO/Telomere_Length/GSE16058" # Output paths out_data_file = "./output/preprocess/3/Telomere_Length/GSE16058.csv" out_gene_data_file = "./output/preprocess/3/Telomere_Length/gene_data/GSE16058.csv" out_clinical_data_file = "./output/preprocess/3/Telomere_Length/clinical_data/GSE16058.csv" json_path = "./output/preprocess/3/Telomere_Length/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes, this is gene expression data studying cell proliferation and aging, not miRNA or methylation is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Row identification trait_row = 3 # Growth status indicates senescence state and telomere length age_row = 2 # Passage number indicates cellular age gender_row = None # No gender information available # 2.2 Data type conversion functions def convert_trait(value: str) -> float: """Convert growth status to binary: 1 for senescent/aged states, 0 for growing states""" if not value or ':' not in value: return None status = value.split(': ')[1].lower() if 'senescent' in status or 'stasis' in status or 'agonesence' in status: return 1.0 elif 'growing' in status or 'intermediate' in status: return 0.0 return None def convert_age(value: str) -> float: """Extract passage number as continuous value""" if not value or ':' not in value: return None try: # Extract number before 'p' passage = value.split(': ')[1] return float(passage.replace('p','')) except: return None def convert_gender(value: str) -> float: """Not used since gender data is unavailable""" return None # 3. Save metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("\nExtracted clinical features preview:") print(preview_df(selected_clinical)) # Save to file os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical.to_csv(out_clinical_data_file) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The identifiers in ID column are from the Affymetrix platform, ending in "_at" format # They need to be mapped to official gene symbols for interpretability requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # 1. Identify relevant columns: 'ID' contains probe IDs and 'Gene Symbol' contains gene symbols probe_col = 'ID' gene_col = 'Gene Symbol' # 2. Get gene mapping dataframe gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col) # 3. Convert probe-level measurements to gene-level measurements gene_data = apply_gene_mapping(genetic_data, gene_mapping) # Preview results print("\nGene expression data shape after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) print("\nFirst few gene symbols:", list(gene_data.index)[:10]) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # Load clinical data previously processed selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) print("\nClinical data shape:", selected_clinical_df.shape) # 2. Link clinical and genetic data using normalized gene-level data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) print("\nLinked data shape:", linked_data.shape) # 3. Handle missing values systematically if trait in linked_data.columns: linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and information saving note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data only if usable and not biased if is_usable and not trait_biased: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)