# Path Configuration from tools.preprocess import * # Processing context trait = "Telomere_Length" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Telomere_Length/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Telomere_Length/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Telomere_Length/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Telomere_Length/cohort_info.json" # Get list of available cohorts available_cohorts = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d)) and not d.startswith('.')] # Initialize flags to track telomere data availability found_telomere_data = False telomere_clinical_data = None telomere_genetic_data = None # Check each cohort for telomere length data for cohort in available_cohorts: if cohort.startswith('.'): # Skip hidden directories continue cohort_dir = os.path.join(tcga_root_dir, cohort) try: # Get file paths clinical_path, genetic_path = tcga_get_relevant_filepaths(cohort_dir) # Load data clinical_df = pd.read_csv(clinical_path, sep='\t', index_col=0) genetic_df = pd.read_csv(genetic_path, sep='\t', index_col=0) # Check for telomere-related measurements clinical_telomere = any('telomere' in col.lower() for col in clinical_df.columns) genetic_telomere = any('telomere' in gene.lower() for gene in genetic_df.index) if clinical_telomere or genetic_telomere: found_telomere_data = True telomere_clinical_data = clinical_df telomere_genetic_data = genetic_df print(f"Found telomere data in cohort: {cohort}") print("\nClinical data columns:") print(clinical_df.columns.tolist()) break except Exception as e: print(f"Error processing cohort {cohort}: {str(e)}") continue # Record findings validate_and_save_cohort_info( is_final=False, cohort='TCGA', info_path=json_path, is_gene_available=found_telomere_data, is_trait_available=found_telomere_data ) if not found_telomere_data: print("\nNo telomere length measurements found in any TCGA cohort.")