# Path Configuration from tools.preprocess import * # Processing context trait = "Testicular_Cancer" cohort = "GSE42647" # Input paths in_trait_dir = "../DATA/GEO/Testicular_Cancer" in_cohort_dir = "../DATA/GEO/Testicular_Cancer/GSE42647" # Output paths out_data_file = "./output/preprocess/3/Testicular_Cancer/GSE42647.csv" out_gene_data_file = "./output/preprocess/3/Testicular_Cancer/gene_data/GSE42647.csv" out_clinical_data_file = "./output/preprocess/3/Testicular_Cancer/clinical_data/GSE42647.csv" json_path = "./output/preprocess/3/Testicular_Cancer/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes, this dataset likely contains gene expression data since it's about pluripotent testicular cancer cells is_gene_available = True # 2.1 Data Availability # From sample characteristics: # Row 0 shows all samples are from NT2/D1-R1 cell line # Row 1 shows all samples are human embryonal carcinoma # Since these are all testicular cancer cell lines, trait value is 1 for all trait_row = 1 # Use row 1 to identify testicular cancer samples # Age and gender not available since this is cell line data age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): """Convert to binary: 1 for testicular cancer""" value = x.split(": ")[1].lower() if 'ebryonal carcinoma' in value: return 1 return None def convert_age(x): """Not used since age data unavailable""" return None def convert_gender(x): """Not used since gender data unavailable""" return None # 3. Save initial metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features since trait_row is not None clinical_features = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Since the previous assessment shows this is methylation data (not gene expression) # and the reviewer indicated we need to return to Step 2, we should not proceed with # gene data extraction. Simply print an explanatory message. print("ERROR: This dataset (GSE42647) contains methylation data rather than gene expression data.") print("Gene data extraction stopped as methylation data is not suitable for this analysis.") print("Please revise Step 2 to correctly set is_gene_available = False") # 1. Gene Expression Data Availability is_gene_available = False # Methylation data is not suitable # 2. Variable Availability and Data Type Conversion # Since gene data is not suitable, we can skip further preprocessing trait_row = None # Not proceeding with clinical data extraction age_row = None gender_row = None # Dummy conversion functions (won't be used but defined for completeness) def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Skip this step since trait_row is None