# Path Configuration from tools.preprocess import * # Processing context trait = "Testicular_Cancer" cohort = "GSE62523" # Input paths in_trait_dir = "../DATA/GEO/Testicular_Cancer" in_cohort_dir = "../DATA/GEO/Testicular_Cancer/GSE62523" # Output paths out_data_file = "./output/preprocess/3/Testicular_Cancer/GSE62523.csv" out_gene_data_file = "./output/preprocess/3/Testicular_Cancer/gene_data/GSE62523.csv" out_clinical_data_file = "./output/preprocess/3/Testicular_Cancer/clinical_data/GSE62523.csv" json_path = "./output/preprocess/3/Testicular_Cancer/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # Gene expression data availability is_gene_available = True # This is a cDNA microarray study according to background info # Clinical data availability assessment trait_row = None # Cell line study, no real patient data age_row = None # No age information available gender_row = None # No gender information available # Data conversion functions def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # Save metadata about dataset usability validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Examine data structure print("Data structure and head:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) print("\nFirst 20 row IDs (gene/probe identifiers):") print(list(genetic_data.index)[:20]) # Get a few column names to verify sample IDs print("\nFirst 5 column names:") print(list(genetic_data.columns)[:5]) # The identifiers appear to be custom probe IDs (e.g. '1.1.1.1', '1.1.1.10') rather than standard # human gene symbols like BRCA1, TP53 etc. These will need to be mapped to gene symbols. requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Get gene mapping from annotation data mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene symbol') # Apply mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Display results print("\nGene data preview:") print(preview_df(gene_data)) print("\nGene data shape:", gene_data.shape) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # Since no clinical data is available (trait_row was None in Step 2), # we create a minimal DataFrame with no clinical features minimal_df = pd.DataFrame(index=gene_data.columns) for column in gene_data.index: minimal_df[column] = gene_data.loc[column] # Evaluate the gene data quality without trait analysis trait_biased = True # No trait analysis possible minimal_df = minimal_df.iloc[:, :1000] # Take subset of genes to reduce size note = "This is a cell line study without patient trait data. While gene expression data was successfully preprocessed from probe-level to gene-level using NCBI Gene database, the dataset cannot be used for trait association analysis." # Final validation reflecting lack of clinical data is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=trait_biased, df=minimal_df, note=note )