# Path Configuration from tools.preprocess import * # Processing context trait = "Thyroid_Cancer" cohort = "GSE104006" # Input paths in_trait_dir = "../DATA/GEO/Thyroid_Cancer" in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE104006" # Output paths out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE104006.csv" out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE104006.csv" out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE104006.csv" json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # Based on Series title mentioning "gene expression profiling" # 2.1 Data Availability trait_row = 1 # Histology field contains tumor status age_row = 2 # Age information is available gender_row = 3 # Sex information is available # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert histology to binary: 1 for tumor types, 0 for non-neoplastic""" if not isinstance(value, str): return None value = value.split(': ')[-1].strip() if value == 'Non-neoplastic_thyroid': return 0 elif value in ['PDTC', 'PTC', 'PDTC+PTC', 'PTC+PDTC', 'PTC_lymph_node_metastasis']: return 1 return None def convert_age(value): """Convert age to continuous numeric value""" if not isinstance(value, str): return None try: return float(value.split(': ')[-1]) except: return None def convert_gender(value): """Convert gender to binary: 0 for female, 1 for male""" if not isinstance(value, str): return None value = value.split(': ')[-1].strip() if value == 'F': return 0 elif value == 'M': return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract clinical features selected_clinical = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("\nFirst 20 row IDs:") print(list(genetic_data.index)[:20]) # Print basic data info print("\nData preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Update is_gene_available since this is miRNA data is_gene_available = False # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file)