# Path Configuration from tools.preprocess import * # Processing context trait = "Thyroid_Cancer" cohort = "GSE138198" # Input paths in_trait_dir = "../DATA/GEO/Thyroid_Cancer" in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE138198" # Output paths out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE138198.csv" out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE138198.csv" out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE138198.csv" json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Dataset uses Affymetrix Human Gene 1.0 ST arrays, which measures gene expression is_gene_available = True # 2.1 Data Availability and Row Identification trait_row = 1 # 'sample type' contains cancer vs normal info gender_row = 0 # Gender is available age_row = None # Age is not available # 2.2 Data Type Conversion Functions def convert_trait(value): if not value or ":" not in value: return None value = value.split(": ")[1].lower() # Convert to binary: 1 for cancer (PTC), 0 for normal if "normal" in value: return 0 elif "ptc" in value or "papillary thyroid carcinoma" in value: return 1 return None def convert_gender(value): if not value or ":" not in value: return None value = value.split(": ")[1].lower() if value == "f": return 0 elif value == "m": return 1 return None # 3. Save Metadata - Initial Filtering validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of processed clinical data:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # The identifiers in the index appear to be numeric IDs (e.g. 7892501, 7892502) # These are not standard human gene symbols (which are usually alphanumeric like BRCA1, TP53) # Therefore, a mapping from probe IDs to gene symbols will be required requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # Extract probe-to-gene mapping from annotation data # The 'ID' column matches probe IDs in expression data # 'gene_assignment' contains gene symbols in a specific format mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment') # Convert probe-level data to gene-level data using the mapping gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview gene expression data print("\nGene expression data preview:") print("Shape:", gene_data.shape) print("\nFirst few rows:") print(gene_data.head()) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data comparing 27 follicular thyroid cancers with 25 follicular thyroid adenomas." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)