# Path Configuration from tools.preprocess import * # Processing context trait = "Thyroid_Cancer" cohort = "GSE151179" # Input paths in_trait_dir = "../DATA/GEO/Thyroid_Cancer" in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE151179" # Output paths out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE151179.csv" out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE151179.csv" out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE151179.csv" json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # From background info, this is gene expression data is_gene_available = True # 2. Clinical Feature Variables # 2.1 Data Availability # Trait (cancer status) can be inferred from tissue type (row 1) # Non-neoplastic thyroid = control, others = cancer case trait_row = 1 # Age and gender not available in sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert tissue type to binary trait (0=control, 1=cancer)""" if not isinstance(value, str): return None value = value.split(': ')[1].lower() if ': ' in value else value.lower() if 'non-neoplastic thyroid' in value: return 0 elif any(x in value for x in ['tumor', 'metastasis']): return 1 return None def convert_age(value: str) -> float: return None def convert_gender(value: str) -> int: return None # 3. Save Metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Review the gene identifiers requires_gene_mapping = True # Explanation: The gene identifiers appear to be probe/sequence IDs (e.g. 23064070) # rather than standard human gene symbols (which would look like BRCA1, TP53 etc). # Therefore mapping to gene symbols will be required. # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # Extract gene id and name mapping from annotation mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='SPOT_ID.1') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols in index gene_data = normalize_gene_symbols_in_index(gene_data) # Preview the mapped data print("\nGene expression data after mapping:") print(gene_data.shape) print("\nFirst few gene names:") print(list(gene_data.index)[:5]) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data comparing 27 follicular thyroid cancers with 25 follicular thyroid adenomas." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)