# Path Configuration from tools.preprocess import * # Processing context trait = "Thyroid_Cancer" cohort = "GSE151181" # Input paths in_trait_dir = "../DATA/GEO/Thyroid_Cancer" in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE151181" # Output paths out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE151181.csv" out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE151181.csv" out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE151181.csv" json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Yes, this dataset contains gene expression data as indicated by the dataset title is_gene_available = True # 2.1 Data Availability # tissue type (row 1) indicates tumor vs normal tissue trait_row = 1 # Age and gender not available in sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert tissue type to binary (0=normal, 1=tumor)""" if not isinstance(value, str): return None value = value.split(": ")[-1].lower() if "non-neoplastic" in value: return 0 elif any(x in value for x in ["tumor", "metastasis"]): return 1 return None def convert_age(value: str) -> float: """Convert age to float""" return None def convert_gender(value: str) -> int: """Convert gender to binary""" return None # 3. Save metadata about dataset availability validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Extract clinical features since trait_row is not None clinical_features_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features print(preview_df(clinical_features_df)) # Save clinical data clinical_features_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # The IDs in the row index appear to be numeric identifiers (e.g. 23064070) # rather than standard human gene symbols (e.g. BRCA1, TP53) # These numeric IDs likely need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data with modified prefix filtering gene_metadata = get_gene_annotation(soft_file_path, prefixes=['!Platform_table_begin']) # Clean up column names by removing leading/trailing whitespace gene_metadata = gene_metadata.rename(columns=lambda x: x.strip()) # Preview column names and first few values print("\nGene annotation columns preview:") print(gene_metadata.columns.tolist()) print("\nFirst few rows:") print(gene_metadata.head()) # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path, prefixes=['^', '!', '#']) # Clean up any whitespace in column names gene_metadata.columns = gene_metadata.columns.str.strip() # Preview column names and first few values preview = preview_df(gene_metadata, n=5) print("\nGene annotation preview:") for col, values in preview.items(): print(f"\n{col}:") print(values) # Update status since we determined this is a miRNA dataset without gene mapping is_gene_available = False # Save updated metadata indicating gene expression data is not available validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) )