# Path Configuration from tools.preprocess import * # Processing context trait = "Underweight" cohort = "GSE130563" # Input paths in_trait_dir = "../DATA/GEO/Underweight" in_cohort_dir = "../DATA/GEO/Underweight/GSE130563" # Output paths out_data_file = "./output/preprocess/3/Underweight/GSE130563.csv" out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE130563.csv" out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE130563.csv" json_path = "./output/preprocess/3/Underweight/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # Based on background info, this is gene expression data from muscle biopsies # 2.1 Data Availability trait_row = 3 # bw loss data available in row 3 age_row = 4 # age data available in row 4 gender_row = 1 # gender data available in row 1 as "Sex" # 2.2 Data Type Conversion Functions def convert_trait(val): # Extract value after colon if ':' in val: val = val.split(':')[1].strip() # Convert to binary based on >= 5% weight loss criteria mentioned in background try: if val == '0': return 0 elif val == 'n.d. (not determined)': return None else: weight_loss = float(val) return 1 if weight_loss >= 5 else 0 except: return None def convert_age(val): # Extract age value after colon if ':' in val: val = val.split(':')[1].strip() try: return float(val) except: return None def convert_gender(val): # Extract gender value after colon and convert F->0, M->1 if ':' in val: val = val.split(':')[1].strip() if val == 'F': return 0 elif val == 'M': return 1 return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted features print(preview_df(clinical_features)) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # These identifiers appear to be microarray probe IDs (suffix '_at' is characteristic of Affymetrix arrays) # rather than standard human gene symbols. They will need to be mapped to gene symbols. requires_gene_mapping = True # Extract gene annotation from SOFT file with broader prefix filtering gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!', '#']) # Display all column names print("All annotation columns:") print(list(gene_annotation.columns)) # Preview first few rows of annotation data print("\nGene annotation preview (first few rows):") print(gene_annotation.head()) # Extract platform annotation data by excluding series and sample sections gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!Series', '!Sample', '^']) # Print details about annotation data for debugging print("Gene annotation preview:") print(gene_annotation.head()) print("\nAnnotation shape:", gene_annotation.shape) print("\nAnnotation columns:", list(gene_annotation.columns)) # Based on column names, get mapping between probes and genes mapping_data = get_gene_mapping(gene_annotation, prob_col='ID_REF', gene_col='Gene Symbol') # Print mapping data preview print("\nMapping data preview:") print(mapping_data.head()) print("\nMapping data shape:", mapping_data.shape) # Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview results print("\nFirst 20 gene symbols:") print(list(gene_data.index[:20])) print("\nShape of gene expression data:") print(gene_data.shape) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Look for platform annotation file platform_files = [f for f in os.listdir(in_cohort_dir) if 'annot' in f.lower()] platform_file_path = os.path.join(in_cohort_dir, platform_files[0]) # Read platform annotation file platform_annotation = pd.read_csv(platform_file_path, sep='\t', skiprows=0, low_memory=False) # Display column names to find relevant ones print("Platform annotation columns:") print(list(platform_annotation.columns)) # Preview platform annotation data print("\nPlatform annotation preview:") print(platform_annotation[['probeset_id', 'gene_assignment']].head()) # Create mapping dataframe between probe IDs and gene symbols mapping_data = platform_annotation[['probeset_id', 'gene_assignment']].copy() mapping_data = mapping_data.rename(columns={'probeset_id': 'ID', 'gene_assignment': 'Gene'}) # Print mapping data shape and preview print("\nMapping data shape:", mapping_data.shape) print("\nMapping data preview:") print(mapping_data.head()) # Try different prefix combinations to find the platform annotation section gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!Platform']) # Print annotation details for debugging print("Gene annotation preview:") print(gene_annotation.head()) print("\nAnnotation columns:", list(gene_annotation.columns)) # Since we can't directly access platform annotation, let's try to obtain probe ID and gene symbol mapping # by examining the expression matrix header probe_ids = genetic_data.index.tolist() mapping_data = pd.DataFrame({'ID': probe_ids}) mapping_data['Gene'] = mapping_data['ID'].str.extract(r'([A-Za-z0-9]+)_at') # Print mapping data preview print("\nMapping data preview:") print(mapping_data.head()) print("\nMapping data shape:", mapping_data.shape) # Apply mapping to convert probe-level to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) print("\nGene data preview:") print(gene_data.head()) print("\nGene data shape:", gene_data.shape) # Save gene data gene_data.to_csv(out_gene_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Get platform annotation from SOFT file prefixes_to_exclude = ['!Series', '!Sample', '^SERIES', '^SAMPLE'] gene_annotation = get_gene_annotation(soft_file_path, prefixes=prefixes_to_exclude) # Extract probe-gene mapping section probe_gene_lines = [] in_mapping = False with gzip.open(soft_file_path, 'rt') as f: for line in f: if '!platform_table_begin' in line: in_mapping = True continue elif '!platform_table_end' in line: break elif in_mapping: probe_gene_lines.append(line) # Create dataframe from probe-gene mapping if probe_gene_lines: mapping_df = pd.read_csv(io.StringIO(''.join(probe_gene_lines)), sep='\t') print("Available columns in platform table:") print(mapping_df.columns) print("\nFirst few rows of platform table:") print(mapping_df.head()) # Extract probe ID and gene columns using available column names id_column = [col for col in mapping_df.columns if 'id' in col.lower()][0] gene_column = [col for col in mapping_df.columns if 'gene' in col.lower()][0] mapping_data = pd.DataFrame({ 'ID': mapping_df[id_column], 'Gene': mapping_df[gene_column] }) else: # If no mapping found, use the probe IDs as gene names probe_ids = genetic_data.index.tolist() mapping_data = pd.DataFrame({'ID': probe_ids, 'Gene': [x.split('_')[0] for x in probe_ids]}) # Convert probe-level to gene-level measurements gene_data = apply_gene_mapping(genetic_data, mapping_data) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data from rectus abdominis muscle biopsies, along with weight loss and clinical information from pancreatic cancer patients." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)