# Path Configuration from tools.preprocess import * # Processing context trait = "Underweight" cohort = "GSE131835" # Input paths in_trait_dir = "../DATA/GEO/Underweight" in_cohort_dir = "../DATA/GEO/Underweight/GSE131835" # Output paths out_data_file = "./output/preprocess/3/Underweight/GSE131835.csv" out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE131835.csv" out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE131835.csv" json_path = "./output/preprocess/3/Underweight/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Based on the title and description, this dataset contains gene expression data from microarray is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # From sample characteristics: # Row 1 shows "group" with CWS/CWL/CONTROL - can infer underweight status trait_row = 1 # Row 3 shows age age_row = 3 # Row 2 shows gender gender_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(x): """Convert group info to binary underweight status""" if not x or ':' not in x: return None value = x.split(':')[1].strip().upper() # CWL (Cancer Weight Loss) indicates underweight if 'CWL' in value: return 1 # CWS (Cancer Weight Stable) and CONTROL are not underweight elif 'CWS' in value or 'CONTROL' in value: return 0 return None def convert_age(x): """Convert age to continuous value""" if not x or ':' not in x: return None try: return float(x.split(':')[1].strip()) except: return None def convert_gender(x): """Convert gender to binary (0=female, 1=male)""" if not x or ':' not in x: return None value = x.split(':')[1].strip().lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview results preview_df(clinical_features) # Save to file os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # The identifiers are in ENSEMBL format (ENSG...) with "_at" suffix # These need to be mapped to standard human gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Extract gene mapping from annotation data # ID column in annotation matches the probe IDs in expression data # ORF column contains the gene symbols gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ORF') # Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, gene_mapping) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data and clinical information from Type 1 Diabetes patients." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)