# Path Configuration from tools.preprocess import * # Processing context trait = "Underweight" cohort = "GSE50982" # Input paths in_trait_dir = "../DATA/GEO/Underweight" in_cohort_dir = "../DATA/GEO/Underweight/GSE50982" # Output paths out_data_file = "./output/preprocess/3/Underweight/GSE50982.csv" out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE50982.csv" out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE50982.csv" json_path = "./output/preprocess/3/Underweight/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene expression data availability - Yes (gene data from cell lines) is_gene_available = True # 2.1 Data availability # Trait (underweight): Determined by knockdown days (Row 1) as knockdown causes cachexia (weight loss) trait_row = 1 # Age and gender not available (cell line study) age_row = None gender_row = None # 2.2 Data type conversion functions def convert_trait(value: str) -> Optional[float]: """Convert knockdown days to binary underweight indicator""" try: if ':' in value: days = float(value.split(':')[1].strip()) # Based on cachexia effect mentioned in background, classify >=8 days as underweight return 1.0 if days >= 8 else 0.0 except: return None return None def convert_age(value: str) -> Optional[float]: return None # Not available def convert_gender(value: str) -> Optional[float]: return None # Not available # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features clinical_selected = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical features:") print(preview_df(clinical_selected)) # Save clinical data clinical_selected.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # The gene IDs are Illumina probe IDs (starting with ILMN_), not standard human gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file by filtering lines with specified prefixes gene_annotation = get_gene_annotation(soft_file_path) # Load gene mapping from extracted annotation, looking for relevant ID and symbol columns gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Preview the mapping data print("Gene mapping preview:") print(preview_df(gene_mapping)) # 1 & 2: Get gene mapping from extracted annotation # Based on previews, ID column contains ILMN_ identifiers matching expression data, and Symbol contains gene names gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3: Apply mapping to convert probe data to gene expression gene_data = apply_gene_mapping(genetic_data, gene_mapping) # Preview first few genes and their expression print("Gene expression data preview:") print(preview_df(gene_data)) # Save gene data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data and clinical information from Type 1 Diabetes patients." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)