# Path Configuration from tools.preprocess import * # Processing context trait = "Underweight" cohort = "GSE57802" # Input paths in_trait_dir = "../DATA/GEO/Underweight" in_cohort_dir = "../DATA/GEO/Underweight/GSE57802" # Output paths out_data_file = "./output/preprocess/3/Underweight/GSE57802.csv" out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE57802.csv" out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE57802.csv" json_path = "./output/preprocess/3/Underweight/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene expression data availability - Analyzing background information # From title and summary, this is transcriptome profiling data, so gene expression data should be available is_gene_available = True # 2.1. Data availability # From sample characteristics, we can see: # - Copy number and genotype info in rows 3 & 4 - can use for trait (underweight) # - Age info in row 2 # - Gender info in row 1 trait_row = 3 # Copy number row for determining underweight status age_row = 2 gender_row = 1 # 2.2. Data type conversion functions def convert_trait(x: str) -> int: """Convert copy number to binary underweight indicator From background info: deletion (copy number 1) is associated with underweight""" if not x or 'copy number 16p11.2' not in x: return None copy_num = x.split(': ')[1] if copy_num == '1': # deletion = underweight return 1 return 0 def convert_age(x: str) -> float: """Convert age string to float value""" if not x or 'age' not in x: return None age_str = x.split(': ')[1] if age_str == 'NA': return None try: return float(age_str) except: return None def convert_gender(x: str) -> int: """Convert gender string to binary (0=female, 1=male)""" if not x or 'gender' not in x: return None gender = x.split(': ')[1] if gender == 'F': return 0 elif gender == 'M': return 1 return None # 3. Save initial metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract clinical features since trait data is available if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # These IDs are Affymetrix probe IDs with _PM_ pattern, not gene symbols # Therefore gene ID mapping will be required requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # 1. Identify relevant columns for mapping # 'ID' column in gene_annotation matches the probe IDs in genetic_data (e.g., '1007_PM_s_at') # 'Gene Symbol' column contains the standardized gene symbols (e.g., 'DDR1') # 2. Extract mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 3. Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the mapped data print("\nFirst few mapped genes:") print(list(gene_data.index[:10])) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data and clinical information from Type 1 Diabetes patients." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)