# Path Configuration from tools.preprocess import * # Processing context trait = "Underweight" cohort = "GSE84954" # Input paths in_trait_dir = "../DATA/GEO/Underweight" in_cohort_dir = "../DATA/GEO/Underweight/GSE84954" # Output paths out_data_file = "./output/preprocess/3/Underweight/GSE84954.csv" out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE84954.csv" out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE84954.csv" json_path = "./output/preprocess/3/Underweight/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # This is microarray data studying molecular pathways in tissues, so it should contain gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # Trait - use chronic liver disease as trait indicator (disease status) trait_row = 1 # Disease information in row 1 def convert_trait(value: str) -> Optional[int]: """Convert disease status to binary (0 for control, 1 for liver disease)""" if not value or ':' not in value: return None value = value.split(':', 1)[1].strip() if 'Crigler-Najjar' in value: # Control group return 0 elif 'chronic liver disease' in value or 'Alagille' in value: # Disease group return 1 return None # Age - not available in sample characteristics age_row = None convert_age = None # Gender - not available in sample characteristics gender_row = None convert_gender = None # 3. Save metadata # Trait data is available since trait_row is not None is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract clinical features since trait data is available selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the clinical data print("Clinical Data Preview:") print(preview_df(selected_clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Analyzing gene identifiers # The identifiers appear to be numeric probe IDs (16650001, 16650003 etc) # These are not standard human gene symbols which are typically alphanumeric like 'BRCA1' # They seem to be probe IDs from a microarray platform that need mapping to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure print("Gene annotation preview:") print(preview_df(gene_annotation)) print("\nAll columns in annotation data:") print(list(gene_annotation.columns)) # 1. Get metadata from SOFT file with correct pattern matching metadata_pattern = r'!platform_table_begin\n(.*?)\n!platform_table_end' with gzip.open(soft_file_path, 'rt') as f: content = f.read() matches = re.findall(metadata_pattern, content, re.DOTALL) if matches: platform_data = pd.read_csv(io.StringIO(matches[0]), sep='\t') # Create mapping using platform data mapping_data = platform_data[['ID', 'Gene Symbol']].copy() mapping_data = mapping_data.dropna() mapping_data = mapping_data.rename(columns={'Gene Symbol': 'Gene'}) # 3. Apply mapping to get gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the mapped gene data print("\nFirst 10 rows of mapped gene expression data:") print(preview_df(gene_data.head(10))) # Save gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) else: print("Could not find platform table in SOFT file") # 1. Get metadata from SOFT file with correct pattern matching # Need to look for lines with gene symbol information platform_pattern = r'#ID = (.*?)\n(.*?)!platform_table_begin' gene_pattern = r'#Gene_Symbol = (.*?)\n' with gzip.open(soft_file_path, 'rt') as f: content = f.read() # Find and extract the platform GPL information section which contains annotation details platform_matches = re.search(platform_pattern, content, re.DOTALL) if platform_matches: platform_section = platform_matches.group(2) gene_matches = re.search(gene_pattern, platform_section) if gene_matches: # Create mapping dataframe with the proper gene symbol column platform_data = pd.read_csv(io.StringIO(platform_matches.group(2)), sep='\t') gene_col = gene_matches.group(1).strip() mapping_data = platform_data[['ID', gene_col]].copy() mapping_data = mapping_data.dropna() mapping_data = mapping_data.rename(columns={gene_col: 'Gene'}) # Apply mapping to get gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the mapped gene expression data print("\nFirst 10 rows of mapped gene expression data:") print(preview_df(gene_data.head(10))) # Save gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) else: print("Could not find gene symbol column information in platform metadata") else: print("Could not find platform metadata section in SOFT file") # Let's examine the SOFT file structure more carefully to find gene symbols with gzip.open(soft_file_path, 'rt') as f: platform_section = False gene_mapping_lines = [] for line in f: if line.startswith('!Platform_table_begin'): platform_section = True continue elif line.startswith('!Platform_table_end'): platform_section = False continue if platform_section: gene_mapping_lines.append(line) # Create mapping dataframe mapping_data = pd.read_csv(io.StringIO(''.join(gene_mapping_lines)), sep='\t') # Filter rows where gene symbol exists and is not empty mapping_data = mapping_data[['ID', 'Symbol']].copy() mapping_data = mapping_data.dropna(subset=['Symbol']) mapping_data = mapping_data[mapping_data['Symbol'].str.strip() != ''] mapping_data = mapping_data.rename(columns={'Symbol': 'Gene'}) # Apply mapping to get gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Normalize gene symbols using NCBI data gene_data = normalize_gene_symbols_in_index(gene_data) print("\nGene data shape (after normalization):", gene_data.shape) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate and save dataset metadata note = "Dataset contains gene expression data from liver disease patients and controls, with proper mapping to standardized gene symbols." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # Get gene annotation data using the library function gene_annotation = get_gene_annotation(soft_file_path) # Create mapping using ID and Symbol columns mapping_data = gene_annotation[['ID', 'Symbol']].copy() mapping_data = mapping_data.dropna() mapping_data = mapping_data.rename(columns={'Symbol': 'Gene'}) # Apply mapping to get gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the mapped gene expression data print("\nFirst few rows of mapped gene expression data:") print(preview_df(gene_data.head())) # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values)