# Path Configuration from tools.preprocess import * # Processing context trait = "Underweight" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Underweight/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Underweight/cohort_info.json" # Review all cohort directories cohorts = os.listdir(tcga_root_dir) cohorts = [c for c in cohorts if not c.startswith('.') and not c.endswith('.ipynb')] # For underweight status, we can use cancer datasets since: # 1. Cancer and its treatments often affect body weight # 2. Many cancer studies track patient weight/BMI # 3. TCGA only contains cancer datasets # Choose pancreatic cancer cohort because: # 1. Weight loss and underweight are common in pancreatic cancer patients # 2. Weight status is particularly relevant to prognosis and treatment cohort_dir = "TCGA_Pancreatic_Cancer_(PAAD)" cohort_path = os.path.join(tcga_root_dir, cohort_dir) # Get clinical and genetic data file paths clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_path) # Load the data files clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # 1. Define candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Get file paths cohort_dir = os.path.join(tcga_root_dir, "PAAD") clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) # 2. Preview first 5 values clinical_data = pd.read_csv(clinical_file_path, index_col=0) # Preview age columns age_preview = {} for col in candidate_age_cols: age_preview[col] = clinical_data[col].head().tolist() print("Age columns preview:", age_preview) # Preview gender columns gender_preview = {} for col in candidate_gender_cols: gender_preview[col] = clinical_data[col].head().tolist() print("Gender columns preview:", gender_preview) # Review all cohort directories cohorts = os.listdir(tcga_root_dir) cohorts = [c for c in cohorts if not c.startswith('.') and not c.endswith('.ipynb')] # For underweight status, we can use cancer datasets since: # 1. Cancer and its treatments often affect body weight # 2. Many cancer studies track patient weight/BMI # 3. TCGA only contains cancer datasets # Choose pancreatic cancer cohort because: # 1. Weight loss and underweight are common in pancreatic cancer patients # 2. Weight status is particularly relevant to prognosis and treatment cohort_dir = "TCGA_Pancreatic_Cancer_(PAAD)" cohort_path = os.path.join(tcga_root_dir, cohort_dir) # Get clinical and genetic data file paths clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_path) # Load the data files clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Select age column (choose age_at_initial_pathologic_diagnosis as it directly represents patient age) age_col = "age_at_initial_pathologic_diagnosis" # Select gender column (gender is clearly named and appropriate for demographics) gender_col = "gender" # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # Select appropriate demographic columns age_col = 'age_at_initial_pathologic_diagnosis' # This is more directly usable than days_to_birth gender_col = 'gender' # 1. Extract and standardize clinical features selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) # 2. Normalize gene symbols in genetic data normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_genetic_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate and save cohort info note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}" is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) print(f"Linked data saved to {out_data_file}") print("Shape of final linked data:", linked_data.shape) else: print("Dataset was found to be unusable and was not saved")