# Path Configuration from tools.preprocess import * # Processing context trait = "Vitamin_D_Levels" cohort = "GSE118723" # Input paths in_trait_dir = "../DATA/GEO/Vitamin_D_Levels" in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE118723" # Output paths out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE118723.csv" out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE118723.csv" out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE118723.csv" json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json" # Request to see vital information before proceeding print("Please provide the following essential information from previous step:") print("Sample characteristics dictionary showing clinical variables") print("Background information about the dataset") print() print("This information is needed to:") print("1. Determine if this dataset has gene expression (not miRNA/methylation)") print("2. Locate trait (Vitamin D levels), age, and gender data") print("3. Design appropriate data type conversions") # Get file paths first soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) print(f"Matrix file path: {matrix_file_path}") # Add debugging to check file content with gzip.open(matrix_file_path, 'rt') as file: first_lines = [next(file) for _ in range(5)] print("\nFirst 5 lines of matrix file:") print('\n'.join(first_lines)) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape print("\nDataFrame shape:", genetic_data.shape) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20]))