# Path Configuration from tools.preprocess import * # Processing context trait = "Vitamin_D_Levels" cohort = "GSE123993" # Input paths in_trait_dir = "../DATA/GEO/Vitamin_D_Levels" in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE123993" # Output paths out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE123993.csv" out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE123993.csv" out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE123993.csv" json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # From background info, this is microarray data using Affymetrix HuGene arrays is_gene_available = True # 2.1 Data Availability # Vitamin D levels can be inferred from the intervention + time information (rows 3 and 4) trait_row = 3 # Age is not recorded in sample characteristics age_row = None # Gender is in row 1 as "Sex" gender_row = 1 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> float: """Convert intervention status to vitamin D level indicator. 25(OH)D3 supplementation increases vitamin D compared to placebo""" if not value or ":" not in value: return None value = value.split(":")[1].strip() # Return 1 for supplementation group, 0 for placebo if "25-hydroxycholecalciferol" in value: return 1.0 elif "Placebo" in value: return 0.0 return None def convert_gender(value: str) -> int: """Convert gender to binary (0=female, 1=male)""" if not value or ":" not in value: return None value = value.split(":")[1].strip().lower() if value == "female": return 0 elif value == "male": return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, gender_row=gender_row, convert_gender=convert_gender) print("Preview of extracted clinical features:") print(preview_df(clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Looking at the probe IDs like '16650001', they appear to be Illumina BeadArray probe IDs # These are not human gene symbols and need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # The probe identifiers in gene_annotation['ID'] match the expression data's index # The gene symbols are in the 'gene_assignment' column and need extraction mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols using NCBI synonyms database gene_data = normalize_gene_symbols_in_index(gene_data) # Print preview of gene data print("Gene expression data preview:") print(preview_df(gene_data)) # Save gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)