# Path Configuration from tools.preprocess import * # Processing context trait = "Vitamin_D_Levels" cohort = "GSE129604" # Input paths in_trait_dir = "../DATA/GEO/Vitamin_D_Levels" in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE129604" # Output paths out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE129604.csv" out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE129604.csv" out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE129604.csv" json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Based on the background information, this is a blood gene expression study is_gene_available = True # 2. Variable Availability and Data Type Conversion # For trait - VitD (binary control/treatment) trait_row = 2 # agent row shows treatment groups def convert_trait(x): if not x or ':' not in x: return None val = x.split(':')[1].strip() if 'VitD' in val: # Any group with VitD treatment return 1 elif 'Placebo' in val: # Control group return 0 return None # Other treatment groups not relevant # For age - not available in sample characteristics age_row = None convert_age = None # For gender - available in Sex field gender_row = 0 def convert_gender(x): if not x or ':' not in x: return None val = x.split(':')[1].strip().lower() if 'female' in val: return 0 elif 'male' in val: return 1 return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # The identifiers shown are probe IDs from an Affymetrix microarray, not human gene symbols # They begin with "AFFX-" which is a standard Affymetrix control probe prefix # These need to be mapped to proper gene symbols for analysis requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # The gene identifiers in expression data are probe IDs starting with "AFFX-" # The 'SPOT_ID.1' column contains the rich gene annotation text from which we can extract gene symbols prob_col = 'ID' gene_col = 'SPOT_ID.1' # Get mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col) # Apply mapping to convert probe values to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview result print("Shape of gene expression data:", gene_data.shape) print("\nFirst few gene symbols:") print(list(gene_data.index[:5])) # Save processed gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)