# Path Configuration from tools.preprocess import * # Processing context trait = "Vitamin_D_Levels" cohort = "GSE33544" # Input paths in_trait_dir = "../DATA/GEO/Vitamin_D_Levels" in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE33544" # Output paths out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE33544.csv" out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE33544.csv" out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE33544.csv" json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # This dataset studies B cell receptor light chain expression, which involves gene expression is_gene_available = True # 2.1 Data Availability # Trait (Vitamin D) is not available in this dataset trait_row = None # Age and gender are not available in the sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions # Not needed since clinical data is not available # 3. Save Metadata # Initial filtering - only check data availability at this stage validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False ) # 4. Clinical Feature Extraction # Skip since trait_row is None and no clinical data is available # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Based on the shown gene identifiers, which are just numeric indices, # we need to map them to actual human gene symbols requires_gene_mapping = True # No need to extract gene annotation since we now know this is not gene expression data # Instead, let's document this finding and update our dataset status # Update is_gene_available since this is sequence data, not gene expression is_gene_available = False # Save updated metadata about dataset usability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False )