# Path Configuration from tools.preprocess import * # Processing context trait = "Vitamin_D_Levels" cohort = "GSE76324" # Input paths in_trait_dir = "../DATA/GEO/Vitamin_D_Levels" in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE76324" # Output paths out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE76324.csv" out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE76324.csv" out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE76324.csv" json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # Check if the dataset contains gene expression data # From background information, this is a microarray dataset for airway epithelium transcriptome analysis is_gene_available = True # Find row indices and define conversion functions for clinical features trait_row = 3 # Row containing vitamin D levels age_row = None # Age information not available gender_row = None # Gender information not available def convert_trait(value): if pd.isna(value): return None # Extract value after colon and convert to numeric values if 'serum 25-oh-d:' in value.lower(): if 'low' in value.lower(): return 0 elif 'mid' in value.lower(): return 1 elif 'high' in value.lower(): return 2 return None def convert_age(value): return None def convert_gender(value): return None # Save cohort metadata is_trait_available = trait_row is not None is_usable = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Extract clinical features if trait data is available if is_trait_available: selected_clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the processed clinical data preview = preview_df(selected_clinical_df) print("Preview of processed clinical data:", preview) # Save processed clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Extract probe-gene mapping from gene annotation mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply probe-to-gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the gene data print("\nFirst 10 genes and their data shape:") print("Shape:", gene_data.shape) print("Gene symbols:", list(gene_data.index[:10])) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)