# Path Configuration from tools.preprocess import * # Processing context trait = "Von_Hippel_Lindau" cohort = "GSE33093" # Input paths in_trait_dir = "../DATA/GEO/Von_Hippel_Lindau" in_cohort_dir = "../DATA/GEO/Von_Hippel_Lindau/GSE33093" # Output paths out_data_file = "./output/preprocess/3/Von_Hippel_Lindau/GSE33093.csv" out_gene_data_file = "./output/preprocess/3/Von_Hippel_Lindau/gene_data/GSE33093.csv" out_clinical_data_file = "./output/preprocess/3/Von_Hippel_Lindau/clinical_data/GSE33093.csv" json_path = "./output/preprocess/3/Von_Hippel_Lindau/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Based on series description, this is a gene expression study is_gene_available = True # 2.1 Data Availability # Looking at sample characteristics, no explicit trait/age/gender data found in the rows # The data does not contain VHL status information needed for the trait trait_row = None age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): # No VHL status data available, function not used return None def convert_age(x): # Age conversion function not used since data not available return None def convert_gender(x): # Gender conversion function not used since data not available return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip since trait_row is None, indicating no clinical data available # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # The gene identifiers appear to be simple numeric indices (1,2,3...) rather than official gene symbols # This indicates they are likely probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file with adjusted prefix filtering gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!Platform_table_begin', '!Platform_table_end']) # Preview both headers and first few rows print("Gene annotation column names:") print(gene_annotation.columns.tolist()) print("\nGene annotation preview:") preview = preview_df(gene_annotation) print(preview) # Also check raw file content around platform table section print("\nChecking raw SOFT file content around platform table:") with gzip.open(soft_file_path, 'rt') as f: in_platform_table = False for i, line in enumerate(f): if '!Platform_table_begin' in line: print(f"\nFound table begin at line {i}:") in_platform_table = True # Print header and first few lines for _ in range(5): print(next(f).strip()) break # Since the SOFT file seems to have a non-standard format, let's examine the raw file first platform_data_lines = [] with gzip.open(soft_file_path, 'rt') as f: in_platform_table = False for line in f: if '!Platform_table_begin' in line: in_platform_table = True continue elif '!Platform_table_end' in line: in_platform_table = False break elif in_platform_table: platform_data_lines.append(line.strip()) # Check if we got any platform data if len(platform_data_lines) > 0: # Convert platform data to dataframe platform_data = pd.read_csv(io.StringIO('\n'.join(platform_data_lines)), sep='\t', low_memory=False) # Print columns to verify we have the platform data print("Platform data columns:", platform_data.columns.tolist()) print("\nFirst few rows of platform data:") print(platform_data.head()) # Create mapping and apply it if we have the required columns id_col = [col for col in platform_data.columns if 'ID' in col.upper()][0] if any('ID' in col.upper() for col in platform_data.columns) else None gene_col = [col for col in platform_data.columns if 'GENE' in col.upper() and 'SYMBOL' in col.upper()][0] if any('GENE' in col.upper() and 'SYMBOL' in col.upper() for col in platform_data.columns) else None if id_col and gene_col: mapping_df = get_gene_mapping(platform_data, prob_col=id_col, gene_col=gene_col) gene_data = apply_gene_mapping(genetic_data, mapping_df) # Save gene expression data if gene_data is not None: os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape:", gene_data.shape) print("First few genes and their expression values:") print(gene_data.head()) else: print("Could not identify ID and Gene Symbol columns in platform data") gene_data = None else: print("Failed to extract platform table with probe-gene mappings") gene_data = None