# Path Configuration from tools.preprocess import * # Processing context trait = "Werner_Syndrome" cohort = "GSE48761" # Input paths in_trait_dir = "../DATA/GEO/Werner_Syndrome" in_cohort_dir = "../DATA/GEO/Werner_Syndrome/GSE48761" # Output paths out_data_file = "./output/preprocess/3/Werner_Syndrome/GSE48761.csv" out_gene_data_file = "./output/preprocess/3/Werner_Syndrome/gene_data/GSE48761.csv" out_clinical_data_file = "./output/preprocess/3/Werner_Syndrome/clinical_data/GSE48761.csv" json_path = "./output/preprocess/3/Werner_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Based on background info, this dataset contains gene expression data from fibroblasts and iPSCs is_gene_available = True # 2.1 Data Availability # Row 2 contains genotype info (WT vs WRN mutant) which indicates Werner Syndrome status trait_row = 2 # Row 1 contains age information age_row = 1 # Row 0 contains gender information gender_row = 0 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert genotype to binary trait value (0=control, 1=Werner Syndrome)""" if not value or ':' not in value: return None value = value.split(':')[1].strip() if 'WRN mutant' in value: return 1 elif 'WT' in value: return 0 return None def convert_age(value: str) -> float: """Convert age string to float value in years""" if not value or ':' not in value: return None value = value.split(':')[1].strip() if value == 'embryonic': return 0.0 # Assign 0 for embryonic samples try: return float(value) except: return None def convert_gender(value: str) -> int: """Convert gender string to binary (0=female, 1=male)""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save Initial Metadata # Perform initial validation validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract Clinical Features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of extracted clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # Based on the gene IDs shown (e.g. 7892501), these appear to be probe IDs from a microarray platform # rather than standard human gene symbols. They will need to be mapped to gene symbols. requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # 1. From checking both dataframes, 'ID' in annotation matches probe IDs in expression data # and 'gene_assignment' contains gene symbols prob_col = 'ID' gene_col = 'gene_assignment' # 2. Get mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) # 3. Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols to standard format gene_data = normalize_gene_symbols_in_index(gene_data) # Preview results print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)