# Path Configuration from tools.preprocess import * # Processing context trait = "Werner_Syndrome" cohort = "GSE62877" # Input paths in_trait_dir = "../DATA/GEO/Werner_Syndrome" in_cohort_dir = "../DATA/GEO/Werner_Syndrome/GSE62877" # Output paths out_data_file = "./output/preprocess/3/Werner_Syndrome/GSE62877.csv" out_gene_data_file = "./output/preprocess/3/Werner_Syndrome/gene_data/GSE62877.csv" out_clinical_data_file = "./output/preprocess/3/Werner_Syndrome/clinical_data/GSE62877.csv" json_path = "./output/preprocess/3/Werner_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data is_gene_available = True # Based on background info mentioning mRNA expression analysis # 2.1 Data Row Identification trait_row = 2 # Using 'group' field to identify WS patients age_row = 1 # Age information appears in row 1 gender_row = 2 # Gender info appears in both row 2 and 5, using row 2 as it's more complete # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None value = x.split(': ')[-1] if value == 'WRN': # WRN group indicates Werner Syndrome patients return 1 elif value in ['control', 'NS']: # Control or non-specific controls return 0 return None def convert_age(x): if pd.isna(x): return None try: age = int(x.split(': ')[-1]) return age except: return None def convert_gender(x): if pd.isna(x): return None value = x.split(': ')[-1].upper() if value in ['F', 'FEMALE']: return 0 elif value in ['M', 'MALE']: return 1 return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # Check first few gene IDs - they appear to be numerical probe IDs probes = ['2315554', '2315633', '2315674', '2315739', '2315894'] # These are Illumina probe IDs, not gene symbols, so we need mapping requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # 'ID' in gene annotation matches probe IDs in expression data # 'gene_assignment' contains gene symbol information mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview result print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)