# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE180393" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180393" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180393.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180393.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180393.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes - based on series info this is microarray gene expression data on Affymetrix ST2.1 platform is_gene_available = True # 2.1 Data Availability & 2.2 Data Type Conversion # For trait: # Row 0 contains "sample group" which indicates disease status trait_row = 0 def convert_trait(value: str) -> Optional[int]: if not isinstance(value, str): return None # Extract value after colon if ':' in value: value = value.split(':', 1)[1].strip() # Living donor = 0 (control), all disease conditions = 1 if 'Living donor' in value: return 0 return 1 # All other values indicate disease conditions # Age and gender data not available in sample characteristics age_row = None gender_row = None def convert_age(value: str) -> Optional[float]: return None def convert_gender(value: str) -> Optional[int]: return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=bool(trait_row is not None)) # 4. Extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # Based on the gene identifiers shown (e.g. '100009613_at', '10000_at'), these appear to be Affymetrix probe IDs # from the microarray platform mentioned in the metadata rather than standard human gene symbols. # Therefore they will need to be mapped to gene symbols. requires_gene_mapping = True # First inspect raw SOFT file content print("First 50 lines of SOFT file:") with gzip.open(soft_file_path, 'rt') as f: for i, line in enumerate(f): if i < 50: # Print first 50 lines print(line.strip()) elif i == 50: print("...\n") # Extract gene annotation gene_annotation = get_gene_annotation(soft_file_path) # Print number of rows and columns print(f"\nShape of annotation data: {gene_annotation.shape}") print("\nColumn names in annotation data:") print(gene_annotation.columns.tolist()) # Print first few entries print("\nPreview of annotation data:") print(gene_annotation.head()) # Get gene annotation using the provided function gene_annotation = get_gene_annotation(soft_file_path) # Create mapping between probe IDs and gene symbols through Entrez IDs prob_to_entrez = gene_annotation[['ID', 'ENTREZ_GENE_ID']].dropna() entrez_to_symbol = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz', sep='\t', compression='gzip', usecols=['GeneID', 'Symbol']).rename(columns={'GeneID': 'ENTREZ_GENE_ID', 'Symbol': 'Gene'}) # Get final mapping and proceed with gene data conversion mapping_df = prob_to_entrez.merge(entrez_to_symbol, on='ENTREZ_GENE_ID', how='left')[['ID', 'Gene']].dropna() # Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols to official ones gene_data = normalize_gene_symbols_in_index(gene_data) print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nPreview of gene expression data:") print(gene_data.head()) # Save gene data gene_data.to_csv(out_gene_data_file) # Get gene annotation using the provided function gene_annotation = get_gene_annotation(soft_file_path) # Create mapping between probe IDs and gene symbols through Entrez IDs prob_to_entrez = gene_annotation[['ID', 'ENTREZ_GENE_ID']].dropna() prob_to_entrez['ENTREZ_GENE_ID'] = prob_to_entrez['ENTREZ_GENE_ID'].astype(str) entrez_to_symbol = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz', sep='\t', compression='gzip', usecols=['GeneID', 'Symbol']) entrez_to_symbol['GeneID'] = entrez_to_symbol['GeneID'].astype(str) # Get final mapping and proceed with gene data conversion mapping_df = prob_to_entrez.merge(entrez_to_symbol, left_on='ENTREZ_GENE_ID', right_on='GeneID', how='left')[['ID', 'Symbol']].dropna() mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'}) # Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols to official ones gene_data = normalize_gene_symbols_in_index(gene_data) print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nPreview of gene expression data:") print(gene_data.head()) # Save gene data gene_data.to_csv(out_gene_data_file) # 1. Gene data was already normalized in previous step os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Validate and save metadata about dataset being unusable due to lack of trait data note = "Dataset contains gene expression data from kidney disease patients, but lacks data for X-linked lymphoproliferative syndrome." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, df=gene_data, note=note ) # 1. Gene expression data was normalized in step 7 and stored in genetic_data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) # 2. Save metadata indicating trait data is unavailable note = "Dataset contains gene expression data from kidney disease patients, but lacks data for X-linked lymphoproliferative syndrome." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, df=genetic_data, note=note )