# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE180394" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180394" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180394.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180394.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180394.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes - based on series title and design info mentioning "transcriptome" and "Affymetrix microarray" is_gene_available = True # 2.1 Data Availability # After reviewing sample characteristics, no X-Linked Lymphoproliferative Syndrome cases found trait_row = None # Trait not available age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: """No X-Linked Lymphoproliferative Syndrome cases in this dataset""" return None def convert_age(value: str) -> Optional[float]: return None # Not available def convert_gender(value: str) -> Optional[int]: return None # Not available # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False) # 4. Clinical Feature Extraction is skipped since trait_row is None # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break requires_gene_mapping = True # Extract gene annotation from SOFT file # Try different prefix combinations to find gene symbol information gene_annotation = get_gene_annotation(soft_file_path, prefixes=['^', '!']) # Print all available columns to check for gene symbol information print("Available columns in gene annotation:") print(gene_annotation.columns.tolist()) # Print first few rows to inspect data print("\nGene annotation preview (first 5 rows):") print(gene_annotation.head()) # Look for Platform annotation section in SOFT file that may contain gene mapping print("\nChecking SOFT file for Platform annotation:") with gzip.open(soft_file_path, 'rt') as f: in_platform = False for i, line in enumerate(f): if line.startswith('^PLATFORM'): in_platform = True print("\nFound Platform section:") if in_platform and i < 100: # Print first 100 lines after platform section print(line.strip()) # Get probe to ENTREZ mapping from annotation mapping_df = gene_annotation.rename(columns={'ID': 'ID', 'ENTREZ_GENE_ID': 'Gene'}) mapping_df = mapping_df.astype({'ID': 'str', 'Gene': 'str'}) # Convert probe-level data to gene-level data using ENTREZ IDs first gene_data = apply_gene_mapping(genetic_data, mapping_df) # Convert ENTREZ IDs to gene symbols and aggregate data gene_data = normalize_gene_symbols_in_index(gene_data) # Print results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # Save gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Get probe IDs that match with genetic_data index pattern probe_pattern = r'[0-9]+_at$' # Pattern matching probes like '10000_at' probes = [id for id in genetic_data.index if re.match(probe_pattern, id)] # Create mapping dataframe mapping_df = pd.DataFrame() mapping_df['ID'] = probes mapping_df['Gene'] = [re.match(r'(\d+)_at', id).group(1) for id in probes] # Convert probe-level measurements to gene-level expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Convert ENTREZ IDs to gene symbols using built-in normalization gene_data = normalize_gene_symbols_in_index(gene_data) # Print results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # Save gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Clean probe IDs to match annotation format by removing leading zeros genetic_data.index = genetic_data.index.str.replace(r'0*([0-9]+_at)', r'\1', regex=True) # Get probe-to-gene mapping from annotation data mapping_df = get_gene_mapping(gene_annotation, 'ID', 'ENTREZ_GENE_ID') # Convert probe-level measurements to gene-level expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Convert ENTREZ IDs to gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Print results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # Save gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Print gene_annotation info to debug print("Gene annotation info:") print(gene_annotation.info()) print("\nGene annotation columns:") print(gene_annotation.columns) # Convert probe IDs in gene_annotation to match expression data format mapping_df = gene_annotation.copy() mapping_df.columns = ['ID', 'Gene'] # Rename columns to match expected format # Clean probe IDs in expression data to match annotation format by removing leading zeros genetic_data.index = genetic_data.index.str.replace(r'0*(\d+)(_at)', r'\1\2', regex=True) # Convert probe measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Convert ENTREZ IDs to gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Print results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # Save gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Create mapping dataframe from gene annotation mapping_df = pd.DataFrame() mapping_df['ID'] = gene_annotation['ID'] mapping_df['Gene'] = gene_annotation['ENTREZ_GENE_ID'] # Clean probe IDs in expression data to match annotation format genetic_data.index = genetic_data.index.str.replace(r'0*(\d+)(_at)', r'\1\2', regex=True) # Convert probe measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Convert ENTREZ IDs to gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Print results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # Save gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file)