# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE180395" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180395" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180395.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180395.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180395.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # This dataset contains kidney biopsy data, likely containing gene expression data is_gene_available = True # 2.1. Data Availability # Looking at sample_group values under key 0, we can classify XLP status trait_row = 0 # No age data available age_row = None # No gender data available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): if value is None or ':' not in value: return None group = value.split(': ')[1].lower() # Since XLP often presents with lymphoproliferative conditions if any(x in group for x in ['gn', 'glomerul', 'infiltration', 'lymph']): return 1 # Disease manifestation return 0 # Control/healthy def convert_age(value): # Not needed since age data unavailable return None def convert_gender(value): # Not needed since gender data unavailable return None # 3. Save Initial Metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # Based on the "_at" suffix in the gene IDs and the fact these appear to be mouse array probes (e.g. "100009613_at"), # these identifiers need to be mapped to standard gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Print shape and column names for inspection print("Gene annotation shape:", gene_annotation.shape) print("\nColumn names:", list(gene_annotation.columns)) # Preview annotation structure preview = preview_df(gene_annotation) print("\nGene annotation preview:") print(preview) # The annotation contains Entrez IDs which we'll use as interim gene identifiers gene_annotation.columns = ['ID', 'Gene'] # Create mapping dataframe - get_gene_mapping handles the column renaming and filtering mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene') # Apply gene mapping using Entrez IDs as interim gene identifiers gene_data = apply_gene_mapping(genetic_data, mapping_df) # Print shape and preview mapped gene data print("Gene expression data shape after mapping:", gene_data.shape) print("\nPreview of mapped gene expression data:") print(preview_df(gene_data)) # Create empty dataframe since gene mapping failed gene_data = pd.DataFrame() # 1. Save empty gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Save metadata about dataset being unusable note = "Gene mapping failed as SOFT file only contains Entrez IDs without gene symbols. Additionally, this dataset appears to be a kidney biopsy expression study not focused on XLP." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # Raw gene data exists but mapping failed is_trait_available=False, # No XLP-specific data available is_biased=False, # Set explicit value as required df=gene_data, # Provide empty DataFrame note=note ) # Do not save linked data as it is not usable