# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE190042" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE190042" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE190042.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE190042.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE190042.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Based on the Series_summary, this is a transcriptome profiling dataset using Affymetrix PrimeView array # This indicates gene expression data is available is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Row identification trait_row = None # No data about X-Linked Lymphoproliferative Syndrome age_row = 2 # Age data in row 2 gender_row = 1 # Gender data in row 1 # 2.2 Data Type Conversion Functions def convert_age(x): if not x or ':' not in x: return None age_str = x.split(':')[1].strip() try: return float(age_str) except: return None def convert_gender(x): if not x or ':' not in x: return None gender = x.split(':')[1].strip().upper() if gender == 'F': return 0 elif gender == 'M': return 1 return None def convert_trait(x): return None # Not used since trait data is not available # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Get gene mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Save the processed gene data gene_data.to_csv(out_gene_data_file) # Since trait_row is None, skip clinical feature extraction and data linking # Just validate and save metadata about dataset being unusable due to lack of trait data note = "Dataset contains gene expression data from multiple myeloma patients, but lacks data for X-linked lymphoproliferative syndrome." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=None, df=None, note=note ) # No need to save any processed data since dataset isn't usable # 1. Normalize gene symbols in gene expression data genetic_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) # 2. Validate and save metadata about dataset being unusable due to lack of trait data note = "Dataset contains gene expression data from multiple myeloma patients, but lacks data for X-linked lymphoproliferative syndrome." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, df=genetic_data, note=note )