# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE211445" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE211445" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE211445.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE211445.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE211445.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = False # Just cell line data, not patient gene expression data # 2.1 Data Availability trait_row = None # No disease/control status, only cell line experiments age_row = None # No age data gender_row = None # No gender data # 2.2 Data Type Conversion Functions def convert_trait(value): return None def convert_age(value): return None def convert_gender(value): return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # These are Illumina probe IDs (starting with ILMN_) rather than gene symbols # Need to map these to actual gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Get mapping between gene identifiers and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Apply gene mapping to convert probe-level measurements to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_df) # Print preview of gene data print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # Since we determined no valid clinical data exists, use gene_data as the dataset # and mark as biased since cell line data isn't suitable for human trait studies is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # No valid trait data is_biased=True, # Cell line data is inherently biased for human trait studies df=gene_data, # Use gene_data as the dataframe note="Dataset contains only cell line experimental data without clinical features suitable for trait analysis." ) # Don't save linked data since dataset isn't usable for trait analysis