# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE222124" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE222124" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE222124.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE222124.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE222124.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # based on title and summary, this is a gene expression study # 2.1 Data Availability # Not suitable for X-Linked Lymphoproliferative Syndrome studies: # - All samples are cell lines (Jurkat, THP1, KHYG-1) # - The leukemia types shown are not X-Linked Lymphoproliferative Syndrome # - No appropriate control samples trait_row = None age_row = None # age data not available gender_row = None # gender data not available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Not used as trait data is not appropriately available""" return None def convert_age(value: str) -> float: """Not used as age data is not available""" return None def convert_gender(value: str) -> int: """Not used as gender data is not available""" return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical feature extraction is skipped since trait_row is None # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # Looking at the gene IDs which are in the format like '1007_s_at', '1053_at', etc. # These are Affymetrix probe IDs which need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Get gene mapping DataFrame mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Print shape of generated data print("\nGene expression data shape:", gene_data.shape) print("\nFirst few genes and their expression values:") print(gene_data.head()) # 1. Normalize gene symbols in gene expression data genetic_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", genetic_data.shape) # Create empty DataFrame to satisfy function requirements empty_df = pd.DataFrame() # Since we determined in step 2 that trait data is not available (trait_row is None), # we cannot proceed with data linking and subsequent steps. # Instead, we validate and save the metadata indicating this dataset is not usable. note = "Dataset contains gene expression data but lacks appropriate clinical data for X-Linked Lymphoproliferative Syndrome analysis (all samples are cancer cell lines)." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Set to True since data is unsuitable df=empty_df, # Provide empty DataFrame note=note )