# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE239832" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE239832" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE239832.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE239832.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE239832.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # Yes - Based on the background info, this is a gene expression profiling study is_gene_available = True # 2. Clinical Feature Analysis # Gender data is in row 0, with clear female/male values # No age data # Trait data can be inferred from cll-fish data in row 1, where 17p indicates our target condition gender_row = 0 age_row = None trait_row = 1 def convert_gender(value: str) -> int: """Convert gender data to binary format""" if not value or ':' not in value: return None gender = value.split(':')[1].strip().lower() if gender == 'f': return 0 elif gender == 'm': return 1 return None def convert_age(value: str) -> float: """Placeholder for age conversion""" return None def convert_trait(value: str) -> int: """Convert 17p deletion status (trait) to binary""" if not value or ':' not in value: return None cll_fish = value.split(':')[1].strip().lower() # 1 if 17p deletion is present, 0 otherwise return 1 if '17p' in cll_fish else 0 # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract Clinical Features clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print("Preview of processed clinical data:") print(preview_df(clinical_df)) clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # Observe first few gene identifiers - they appear to be Affymetrix probe IDs (e.g. 1007_s_at) # rather than standard human gene symbols. We need to map these to gene symbols. requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview annotation structure preview = preview_df(gene_annotation) print("Gene annotation preview:") print(preview) # Extract mapping between probe IDs (ID) and gene symbols (Gene Symbol) mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview gene data shape and first few rows print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nFirst 5 rows of mapped gene data:") print(gene_data.head()) # 1. Normalize gene symbols in gene expression data genetic_data = normalize_gene_symbols_in_index(gene_data) # Check if normalization resulted in empty data if genetic_data.shape[0] == 0: print("\nNo valid genes remained after normalization.") selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=False, is_trait_available=True, is_biased=True, df=selected_clinical_df, note="Gene symbol normalization resulted in empty dataset" ) else: os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", genetic_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data but normalization removed all genes." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)