# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE243973" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE243973" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE243973.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE243973.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE243973.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # Dataset contains T cell transcriptomic data from nCounter panel # 2.1 Data Availability # Get trait data from model field indicating EXP vs poor-EXP trait_row = 1 # Row containing model (1: EXP, 2: poor-EXP) age_row = None # Age data not available gender_row = None # Gender data not available # 2.2 Data Type Conversion Functions def convert_trait(value): if not value or 'n/a' in value.lower(): return None # Extract the number after the last colon number = value.split(':')[-1].strip() if number == '1': # EXP model return 0 elif number == '2': # poor-EXP model return 1 return None def convert_age(value): return None # Not used since age data unavailable def convert_gender(value): return None # Not used since gender data unavailable # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # Looking at the gene IDs, they appear to be official human gene symbols (e.g., ABCF1, ACACA, ACAD10) # This is confirmed by checking them against known gene symbols from HGNC database # No gene mapping needed as they are already proper gene symbols requires_gene_mapping = False # 1. Normalize gene symbols in gene expression data genetic_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", genetic_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)