# Path Configuration from tools.preprocess import * # Processing context trait = "X-Linked_Lymphoproliferative_Syndrome" cohort = "GSE248835" # Input paths in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE248835" # Output paths out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE248835.csv" out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE248835.csv" out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE248835.csv" json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Print shape and first few rows to verify data print("Background Information:") print(background_info) print("\nClinical Data Shape:", clinical_data.shape) print("\nFirst few rows of Clinical Data:") print(clinical_data.head()) print("\nSample Characteristics:") # Get dictionary of unique values per row unique_values_dict = get_unique_values_by_row(clinical_data) for row, values in unique_values_dict.items(): print(f"\n{row}:") print(values) # 1. Gene Expression Data Availability # From the background info, this is a gene expression study analyzing B-cell lymphoma tumor characteristics is_gene_available = True # 2.1 Data Availability # From sample characteristics: # Row 1 shows treatment arm, can be used to infer trait(disease state): "Axicabtagene Ciloleucel" vs "Standard of Care Chemotherapy" # Age and gender are not available trait_row = 1 age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> float: """ Convert treatment arm information to binary values. 1: Axicabtagene Ciloleucel (experimental treatment) 0: Standard of Care Chemotherapy (control) """ if pd.isna(value): return None if isinstance(value, str): if "treatment arm:" in value: if "Axicabtagene Ciloleucel" in value: return 1 elif "Standard of Care Chemotherapy" in value: return 0 return None convert_age = None convert_gender = None # 3. Save Metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and shape of data print("Shape of genetic data:", genetic_data.shape) print("\nFirst 5 rows with sample columns:") print(genetic_data.head()) print("\nFirst 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # Print first few lines of raw matrix file to inspect format print("\nFirst few lines of raw matrix file:") with gzip.open(matrix_file_path, 'rt') as f: for i, line in enumerate(f): if i < 10: # Print first 10 lines print(line.strip()) elif "!series_matrix_table_begin" in line: print("\nFound table marker at line", i) # Print next 3 lines after marker for _ in range(3): print(next(f).strip()) break # Review gene identifiers # Based on the first few gene IDs (1, 2, 3, etc) and series info showing this is an array study, # these are probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Display gene annotation structure print("Gene annotation columns:") print(gene_annotation.columns) print("\nGene annotation preview:") print(preview_df(gene_annotation)) # Get gene mapping - "ID" is the probe identifier column matching the gene expression data # "Gene_Signature_Name" seems to contain gene names/signatures mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col='ID', gene_col='Gene_Signature_Name' ) # Apply gene mapping to convert probe-level measurements to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the resulting gene expression data print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows and columns of mapped gene data:") print(gene_data.head()) # 1. Normalize gene symbols in gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) print("\nGene data shape (normalized gene-level):", gene_data.shape) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save dataset metadata note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)