liufeng commited on
Commit
316e22d
·
1 Parent(s): d346e50

move Datasets Construction Details to Github

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/00_OpenSWI-deep-example.ipynb +0 -0
  2. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/01_CSEM_Eastmed.ipynb +0 -0
  3. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/02_CSEM_Europe.ipynb +0 -0
  4. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/03_US-upper-mantle.ipynb +0 -0
  5. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/04_Alaska.ipynb +0 -0
  6. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/05_EUCrust.ipynb +0 -0
  7. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/06_CSEM_South_Atlantic.ipynb +0 -0
  8. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/07_CSEM_North_Atlantic.ipynb +0 -0
  9. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/08_CSEM_Japan.ipynb +0 -0
  10. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/09_CSEM_lberia.ipynb +0 -0
  11. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/10_CSEM_Australasia.ipynb +0 -0
  12. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/11_USTCLitho1.ipynb +0 -0
  13. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/12_LITHO1.ipynb +0 -0
  14. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/13_Central_and_Western_US_Shen2013.ipynb +0 -0
  15. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/14_Continental_China_Shen2016.ipynb +0 -0
  16. Datasets-Construction/OpenSWI-deep/1s-100s-Aug/vs_demo.txt +0 -301
  17. Datasets-Construction/OpenSWI-deep/1s-100s-Base/01_CSEM_Eastmed.ipynb +0 -0
  18. Datasets-Construction/OpenSWI-deep/1s-100s-Base/02_CSEM_Europe.ipynb +0 -0
  19. Datasets-Construction/OpenSWI-deep/1s-100s-Base/03_US-upper-mantle.ipynb +0 -0
  20. Datasets-Construction/OpenSWI-deep/1s-100s-Base/04_Alaska.ipynb +0 -0
  21. Datasets-Construction/OpenSWI-deep/1s-100s-Base/05_EUCrust1.0.ipynb +0 -0
  22. Datasets-Construction/OpenSWI-deep/1s-100s-Base/06_CSEM_South_Atlantic.ipynb +0 -0
  23. Datasets-Construction/OpenSWI-deep/1s-100s-Base/07_CSEM_North_Atlantic.ipynb +0 -0
  24. Datasets-Construction/OpenSWI-deep/1s-100s-Base/08_CSEM_Japan.ipynb +0 -0
  25. Datasets-Construction/OpenSWI-deep/1s-100s-Base/09_CSEM_lberia.ipynb +0 -0
  26. Datasets-Construction/OpenSWI-deep/1s-100s-Base/10_CSEM_Australasia.ipynb +0 -0
  27. Datasets-Construction/OpenSWI-deep/1s-100s-Base/11_USTCLitho1.ipynb +0 -0
  28. Datasets-Construction/OpenSWI-deep/1s-100s-Base/12_LITHO1.ipynb +0 -0
  29. Datasets-Construction/OpenSWI-deep/1s-100s-Base/13_Central_and_Western_US-Shen2013.ipynb +0 -0
  30. Datasets-Construction/OpenSWI-deep/1s-100s-Base/14_Continental-China-Shen2016.ipynb +0 -0
  31. Datasets-Construction/OpenSWI-real/CSRM/01_CSRM_Real.ipynb +0 -0
  32. Datasets-Construction/OpenSWI-real/LongBeanch/01_longBeach.ipynb +0 -0
  33. Datasets-Construction/OpenSWI-real/LongBeanch/Backup/02_syn_longBeach.ipynb +0 -0
  34. Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/00_OpenSWI-shallow-example.ipynb +0 -0
  35. Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_1_OpenFWI-FlatVel-A.ipynb +0 -0
  36. Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_2_OpenFWI-FlatFault-A.ipynb +0 -0
  37. Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_3_OpenFWI-CurveVel-A.ipynb +0 -0
  38. Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_4_OpenFWI-CurveFault-A.ipynb +0 -0
  39. Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_5_OpenFWI-Style-A.ipynb +0 -0
  40. Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/vp_demo.txt +0 -70
  41. Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_1_OpenFWI-FlatVel-A.ipynb +0 -0
  42. Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_2_OpenFWI-FlatFault-A.ipynb +0 -0
  43. Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_3_OpenFWI-CurveVel-A.ipynb +0 -0
  44. Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_4_OpenFWI-CurveFault-A.ipynb +0 -0
  45. Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_5_OpenFWI-Style-A.ipynb +0 -0
  46. SWIDP/README.md +0 -180
  47. SWIDP/__init__.py +0 -0
  48. SWIDP/diffusion_aug_2d.py +0 -298
  49. SWIDP/dispersion.py +0 -367
  50. SWIDP/download_2d_3d_model.py +0 -31
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/00_OpenSWI-deep-example.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/01_CSEM_Eastmed.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/02_CSEM_Europe.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/03_US-upper-mantle.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/04_Alaska.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/05_EUCrust.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/06_CSEM_South_Atlantic.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/07_CSEM_North_Atlantic.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/08_CSEM_Japan.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/09_CSEM_lberia.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/10_CSEM_Australasia.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/11_USTCLitho1.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/12_LITHO1.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/13_Central_and_Western_US_Shen2013.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/14_Continental_China_Shen2016.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/vs_demo.txt DELETED
@@ -1,301 +0,0 @@
1
- 0.0000 3.1342
2
- 1.0000 3.1342
3
- 2.0000 3.1342
4
- 3.0000 3.1342
5
- 4.0000 3.1342
6
- 5.0000 3.1342
7
- 6.0000 3.1345
8
- 7.0000 3.1345
9
- 8.0000 3.1345
10
- 9.0000 3.1345
11
- 10.0000 3.1345
12
- 11.0000 3.1345
13
- 12.0000 3.1345
14
- 13.0000 3.1345
15
- 14.0000 3.1345
16
- 15.0000 3.1345
17
- 16.0000 3.9061
18
- 17.0000 3.9061
19
- 18.0000 3.9061
20
- 19.0000 3.9061
21
- 20.0000 3.9061
22
- 21.0000 3.9061
23
- 22.0000 3.9061
24
- 23.0000 3.9061
25
- 24.0000 3.9061
26
- 25.0000 3.9061
27
- 26.0000 4.3299
28
- 27.0000 4.3299
29
- 28.0000 4.3299
30
- 29.0000 4.3299
31
- 30.0000 4.3299
32
- 31.0000 4.3299
33
- 32.0000 4.3299
34
- 33.0000 4.3299
35
- 34.0000 4.3299
36
- 35.0000 4.3299
37
- 36.0000 4.4193
38
- 37.0000 4.4193
39
- 38.0000 4.4193
40
- 39.0000 4.4193
41
- 40.0000 4.4193
42
- 41.0000 4.4193
43
- 42.0000 4.4193
44
- 43.0000 4.4193
45
- 44.0000 4.4193
46
- 45.0000 4.4193
47
- 46.0000 4.4396
48
- 47.0000 4.4396
49
- 48.0000 4.4396
50
- 49.0000 4.4396
51
- 50.0000 4.4396
52
- 51.0000 4.4396
53
- 52.0000 4.4396
54
- 53.0000 4.4396
55
- 54.0000 4.4396
56
- 55.0000 4.4396
57
- 56.0000 4.4369
58
- 57.0000 4.4369
59
- 58.0000 4.4369
60
- 59.0000 4.4369
61
- 60.0000 4.4369
62
- 61.0000 4.4369
63
- 62.0000 4.4369
64
- 63.0000 4.4369
65
- 64.0000 4.4369
66
- 65.0000 4.4369
67
- 66.0000 4.4306
68
- 67.0000 4.4306
69
- 68.0000 4.4306
70
- 69.0000 4.4306
71
- 70.0000 4.4306
72
- 71.0000 4.4306
73
- 72.0000 4.4306
74
- 73.0000 4.4306
75
- 74.0000 4.4306
76
- 75.0000 4.4306
77
- 76.0000 4.4185
78
- 77.0000 4.4185
79
- 78.0000 4.4185
80
- 79.0000 4.4185
81
- 80.0000 4.4185
82
- 81.0000 4.4185
83
- 82.0000 4.4185
84
- 83.0000 4.4185
85
- 84.0000 4.4185
86
- 85.0000 4.4185
87
- 86.0000 4.4073
88
- 87.0000 4.4073
89
- 88.0000 4.4073
90
- 89.0000 4.4073
91
- 90.0000 4.4073
92
- 91.0000 4.4073
93
- 92.0000 4.4073
94
- 93.0000 4.4073
95
- 94.0000 4.4073
96
- 95.0000 4.4073
97
- 96.0000 4.3917
98
- 97.0000 4.3917
99
- 98.0000 4.3917
100
- 99.0000 4.3917
101
- 100.0000 4.3917
102
- 101.0000 4.3917
103
- 102.0000 4.3917
104
- 103.0000 4.3917
105
- 104.0000 4.3917
106
- 105.0000 4.3917
107
- 106.0000 4.3728
108
- 107.0000 4.3728
109
- 108.0000 4.3728
110
- 109.0000 4.3728
111
- 110.0000 4.3728
112
- 111.0000 4.3728
113
- 112.0000 4.3728
114
- 113.0000 4.3728
115
- 114.0000 4.3728
116
- 115.0000 4.3728
117
- 116.0000 4.3649
118
- 117.0000 4.3649
119
- 118.0000 4.3649
120
- 119.0000 4.3649
121
- 120.0000 4.3649
122
- 121.0000 4.3649
123
- 122.0000 4.3649
124
- 123.0000 4.3649
125
- 124.0000 4.3649
126
- 125.0000 4.3649
127
- 126.0000 4.3397
128
- 127.0000 4.3397
129
- 128.0000 4.3397
130
- 129.0000 4.3397
131
- 130.0000 4.3397
132
- 131.0000 4.3397
133
- 132.0000 4.3397
134
- 133.0000 4.3397
135
- 134.0000 4.3397
136
- 135.0000 4.3397
137
- 136.0000 4.3209
138
- 137.0000 4.3209
139
- 138.0000 4.3209
140
- 139.0000 4.3209
141
- 140.0000 4.3209
142
- 141.0000 4.3209
143
- 142.0000 4.3209
144
- 143.0000 4.3209
145
- 144.0000 4.3209
146
- 145.0000 4.3209
147
- 146.0000 4.3034
148
- 147.0000 4.3034
149
- 148.0000 4.3034
150
- 149.0000 4.3034
151
- 150.0000 4.3034
152
- 151.0000 4.3034
153
- 152.0000 4.3034
154
- 153.0000 4.3034
155
- 154.0000 4.3034
156
- 155.0000 4.3034
157
- 156.0000 4.2835
158
- 157.0000 4.2835
159
- 158.0000 4.2835
160
- 159.0000 4.2835
161
- 160.0000 4.2835
162
- 161.0000 4.2835
163
- 162.0000 4.2835
164
- 163.0000 4.2835
165
- 164.0000 4.2835
166
- 165.0000 4.2835
167
- 166.0000 4.2605
168
- 167.0000 4.2605
169
- 168.0000 4.2605
170
- 169.0000 4.2605
171
- 170.0000 4.2605
172
- 171.0000 4.2605
173
- 172.0000 4.2605
174
- 173.0000 4.2605
175
- 174.0000 4.2605
176
- 175.0000 4.2605
177
- 176.0000 4.2465
178
- 177.0000 4.2465
179
- 178.0000 4.2465
180
- 179.0000 4.2465
181
- 180.0000 4.2465
182
- 181.0000 4.2465
183
- 182.0000 4.2465
184
- 183.0000 4.2465
185
- 184.0000 4.2465
186
- 185.0000 4.2465
187
- 186.0000 4.2476
188
- 187.0000 4.2476
189
- 188.0000 4.2476
190
- 189.0000 4.2476
191
- 190.0000 4.2476
192
- 191.0000 4.2476
193
- 192.0000 4.2476
194
- 193.0000 4.2476
195
- 194.0000 4.2476
196
- 195.0000 4.2476
197
- 196.0000 4.4260
198
- 197.0000 4.4260
199
- 198.0000 4.4260
200
- 199.0000 4.4260
201
- 200.0000 4.4260
202
- 201.0000 4.4260
203
- 202.0000 4.4260
204
- 203.0000 4.4260
205
- 204.0000 4.4260
206
- 205.0000 4.4260
207
- 206.0000 4.2914
208
- 207.0000 4.2914
209
- 208.0000 4.2914
210
- 209.0000 4.2914
211
- 210.0000 4.2914
212
- 211.0000 4.2914
213
- 212.0000 4.2914
214
- 213.0000 4.2914
215
- 214.0000 4.2914
216
- 215.0000 4.2914
217
- 216.0000 4.3180
218
- 217.0000 4.3180
219
- 218.0000 4.3180
220
- 219.0000 4.3180
221
- 220.0000 4.3180
222
- 221.0000 4.3180
223
- 222.0000 4.3180
224
- 223.0000 4.3180
225
- 224.0000 4.3180
226
- 225.0000 4.3180
227
- 226.0000 4.3433
228
- 227.0000 4.3433
229
- 228.0000 4.3433
230
- 229.0000 4.3433
231
- 230.0000 4.3433
232
- 231.0000 4.3433
233
- 232.0000 4.3433
234
- 233.0000 4.3433
235
- 234.0000 4.3433
236
- 235.0000 4.3433
237
- 236.0000 4.3661
238
- 237.0000 4.3661
239
- 238.0000 4.3661
240
- 239.0000 4.3661
241
- 240.0000 4.3661
242
- 241.0000 4.3661
243
- 242.0000 4.3661
244
- 243.0000 4.3661
245
- 244.0000 4.3661
246
- 245.0000 4.3661
247
- 246.0000 4.3956
248
- 247.0000 4.3956
249
- 248.0000 4.3956
250
- 249.0000 4.3956
251
- 250.0000 4.3956
252
- 251.0000 4.3956
253
- 252.0000 4.3956
254
- 253.0000 4.3956
255
- 254.0000 4.3956
256
- 255.0000 4.3956
257
- 256.0000 4.4230
258
- 257.0000 4.4230
259
- 258.0000 4.4230
260
- 259.0000 4.4230
261
- 260.0000 4.4230
262
- 261.0000 4.4230
263
- 262.0000 4.4230
264
- 263.0000 4.4230
265
- 264.0000 4.4230
266
- 265.0000 4.4230
267
- 266.0000 4.4492
268
- 267.0000 4.4492
269
- 268.0000 4.4492
270
- 269.0000 4.4492
271
- 270.0000 4.4492
272
- 271.0000 4.4492
273
- 272.0000 4.4492
274
- 273.0000 4.4492
275
- 274.0000 4.4492
276
- 275.0000 4.4492
277
- 276.0000 4.4802
278
- 277.0000 4.4802
279
- 278.0000 4.4802
280
- 279.0000 4.4802
281
- 280.0000 4.4802
282
- 281.0000 4.4802
283
- 282.0000 4.4802
284
- 283.0000 4.4802
285
- 284.0000 4.4802
286
- 285.0000 4.4802
287
- 286.0000 4.5075
288
- 287.0000 4.5075
289
- 288.0000 4.5075
290
- 289.0000 4.5075
291
- 290.0000 4.5075
292
- 291.0000 4.5075
293
- 292.0000 4.5075
294
- 293.0000 4.5075
295
- 294.0000 4.5075
296
- 295.0000 4.5075
297
- 296.0000 4.5413
298
- 297.0000 4.5413
299
- 298.0000 4.5413
300
- 299.0000 4.5413
301
- 300.0000 4.5413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/01_CSEM_Eastmed.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/02_CSEM_Europe.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/03_US-upper-mantle.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/04_Alaska.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/05_EUCrust1.0.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/06_CSEM_South_Atlantic.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/07_CSEM_North_Atlantic.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/08_CSEM_Japan.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/09_CSEM_lberia.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/10_CSEM_Australasia.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/11_USTCLitho1.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/12_LITHO1.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/13_Central_and_Western_US-Shen2013.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-deep/1s-100s-Base/14_Continental-China-Shen2016.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-real/CSRM/01_CSRM_Real.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-real/LongBeanch/01_longBeach.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-real/LongBeanch/Backup/02_syn_longBeach.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/00_OpenSWI-shallow-example.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_1_OpenFWI-FlatVel-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_2_OpenFWI-FlatFault-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_3_OpenFWI-CurveVel-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_4_OpenFWI-CurveFault-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_5_OpenFWI-Style-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/vp_demo.txt DELETED
@@ -1,70 +0,0 @@
1
- 0.0000 1.5870
2
- 0.0400 1.5870
3
- 0.0800 1.5870
4
- 0.1200 1.5870
5
- 0.1600 1.5870
6
- 0.2000 1.5870
7
- 0.2400 1.5870
8
- 0.2800 1.5870
9
- 0.3200 2.1660
10
- 0.3600 2.1660
11
- 0.4000 2.1660
12
- 0.4400 2.1660
13
- 0.4800 2.1660
14
- 0.5200 2.1660
15
- 0.5600 2.1660
16
- 0.6000 2.1660
17
- 0.6400 2.1660
18
- 0.6800 2.7230
19
- 0.7200 2.7230
20
- 0.7600 2.7230
21
- 0.8000 2.7230
22
- 0.8400 2.7230
23
- 0.8800 2.7230
24
- 0.9200 2.7230
25
- 0.9600 2.7230
26
- 1.0000 2.7230
27
- 1.0400 2.7230
28
- 1.0800 2.7230
29
- 1.1200 2.9820
30
- 1.1600 2.9820
31
- 1.2000 2.9820
32
- 1.2400 2.9820
33
- 1.2800 2.9820
34
- 1.3200 2.9820
35
- 1.3600 2.9820
36
- 1.4000 2.9820
37
- 1.4400 2.9820
38
- 1.4800 3.0040
39
- 1.5200 3.0040
40
- 1.5600 3.0040
41
- 1.6000 3.0040
42
- 1.6400 3.0040
43
- 1.6800 3.0040
44
- 1.7200 3.0040
45
- 1.7600 3.0040
46
- 1.8000 3.0040
47
- 1.8400 3.0180
48
- 1.8800 3.0180
49
- 1.9200 3.0180
50
- 1.9600 3.0180
51
- 2.0000 3.0180
52
- 2.0400 3.0180
53
- 2.0800 3.0180
54
- 2.1200 3.0180
55
- 2.1600 3.0180
56
- 2.2000 3.0180
57
- 2.2400 3.0180
58
- 2.2800 3.7610
59
- 2.3200 3.7610
60
- 2.3600 3.7610
61
- 2.4000 3.7610
62
- 2.4400 3.7610
63
- 2.4800 3.7610
64
- 2.5200 3.7610
65
- 2.5600 3.7610
66
- 2.6000 3.7610
67
- 2.6400 4.4770
68
- 2.6800 4.4770
69
- 2.7200 4.4770
70
- 2.7600 4.4770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_1_OpenFWI-FlatVel-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_2_OpenFWI-FlatFault-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_3_OpenFWI-CurveVel-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_4_OpenFWI-CurveFault-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_5_OpenFWI-Style-A.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
SWIDP/README.md DELETED
@@ -1,180 +0,0 @@
1
- ## [SWIDP: Integrated Workflow for Dataset Construction](../SWIDP/)
2
-
3
- SWIDP provides a fully modular pipeline for constructing large-scale surface-wave dispersion curve datasets:
4
-
5
- 1. **Collect and standardize geological models**
6
- Aggregate 2D/3D geological–geomorphological models from public databases and literature, and unify data format through cleaning, parameter conversion, and normalization.
7
-
8
- 2. **Build 1D velocity models**
9
- Extract representative 1D shear-wave velocity profiles, de-duplicate, optimize thin layers, interpolate to uniform thickness, and complete missing parameters (e.g., \(v_p\), density).
10
-
11
- 3. **Augment for geological diversity**
12
- Apply perturbation-based and generative-model-based enhancements to improve geological diversity and boundary complexity coverage.
13
-
14
- 4. **Forward modeling of dispersion curves**
15
- Efficiently compute large-scale surface-wave dispersion curves (using an optimized **Disba**-based solver with parallelization) across diverse period ranges.
16
-
17
- ```mermaid
18
- flowchart LR
19
- A[Collect & Standardize Geological Models] --> B[Build 1D Velocity Models]
20
- B --> C[Augment for Geological Diversity]
21
- C --> D[Forward Modeling of Dispersion Curves]
22
- ```
23
-
24
- ---
25
-
26
- ### Example 1: Building the **OpenSWI-shallow** Dataset
27
-
28
- ```python
29
- import numpy as np
30
- import sys
31
- sys.path.append("OpenSWI/Datasets/OpenSWI/")
32
- from SWIDP.process_1d_shallow import augment_workflow
33
- from SWIDP.dispersion import (
34
- generate_mixed_samples, calculate_dispersion,
35
- transform_vp_to_vs, transform_vs_to_vel_model
36
- )
37
- from p_tqdm import p_map
38
-
39
- # Step 1: Load 1D velocity model n x (depth, vp)
40
- depth_vp = np.loadtxt(
41
- "./OpenSWI/Datasets/OpenSWI/Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/vp_demo.txt"
42
- )
43
- depth = depth_vp[:, 0]
44
- vp = depth_vp[:, 1]
45
-
46
- # Step 2: Convert vp to vs
47
- vs = transform_vp_to_vs(vp)
48
-
49
- # Step 3: Augment vs models
50
- augment_nums = 100
51
- vs_augmented = augment_workflow(
52
- vs, depth,
53
- perturb_num=augment_nums,
54
- vs_perturbation=0.05, # relative ratio
55
- thickness_perturbation=0.1, # relative ratio
56
- vel_threshold=0.05, # km/s
57
- thickness_threshold=0.01, # km
58
- min_layers_num=3,
59
- smooth_vel=False,
60
- smooth_nodes=10
61
- )
62
-
63
- # Step 4: Build full velocity models (depth, vp, vs, rho)
64
- vel_model_augmented = p_map(
65
- transform_vs_to_vel_model,
66
- list(vs_augmented),
67
- [depth] * len(vs_augmented)
68
- )
69
-
70
- # Step 5: Generate dispersion curves [t, phase velocity, group velocity]
71
- t = generate_mixed_samples(
72
- num_samples=100, start=0.2, end=10,
73
- uniform_num=50, log_num=20, random_num=30
74
- )
75
- disp = p_map(
76
- calculate_dispersion,
77
- vel_model_augmented,
78
- [t] * len(vel_model_augmented)
79
- )
80
- ```
81
-
82
- Details of this example can be found at
83
-
84
- | Dataset Type | Description | Link |
85
- |-----------------|-------------------------------------|-------------------------------------------------------------------------------------------|
86
- | **OpenSWI-shallow Example** | Example notebook for the OpenSWI dataset | [OpenSWI-shallow-example.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/00_OpenSWI-shallow-example.ipynb) |
87
- | **Flat** | Flat velocity model construction | [OpenFWI-FlatVel-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_1_OpenFWI-FlatVel-A.ipynb) |
88
- | **Flat-Fault** | Flat velocity model with fault | [OpenFWI-FlatFault-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_2_OpenFWI-FlatFault-A.ipynb) |
89
- | **Fold** | Fold velocity model construction | [OpenFWI-CurveVel-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_3_OpenFWI-CurveVel-A.ipynb) |
90
- | **Fold-Fault** | Fold velocity model with fault | [OpenFWI-CurveFault-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_4_OpenFWI-CurveFault-A.ipynb) |
91
- | **Field** | Field data modeling | [OpenFWI-Style-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_5_OpenFWI-Style-A.ipynb) |
92
-
93
-
94
- ---
95
-
96
- ### Example 2: Building the **OpenSWI-deep** Dataset
97
-
98
- ```python
99
- import numpy as np
100
- import sys
101
- sys.path.append("../../../")
102
- from SWIDP.process_1d_deep import *
103
- from SWIDP.dispersion import generate_mixed_samples,calculate_dispersion,transform_vs_to_vel_model
104
- from p_tqdm import p_map
105
-
106
- # step1: get 1d velocity model (vp model or vs)
107
- depth_vs = np.loadtxt("../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/vs_demo.txt")
108
- depth = depth_vs[:,0]
109
- vs = depth_vs[:,1]
110
-
111
- # step2-1: remove the thin sandwidth layer
112
- vs = combine_thin_sandwich(vs,
113
- depth,
114
- thickness_threshold=12, # km
115
- uniform_thickness=1, # km (thickness_threshold/uniform_thickness) = max_check_layers
116
- gradient_threshold=0.05, # km/s (gradient_threshold)
117
- return_idx=False
118
- )
119
-
120
- # step2-2: smooth the vs model (selectable)
121
- vs = smooth_vs_by_node_interp(vs,
122
- depth,
123
- n_nodes=20,
124
- method="pchip"
125
- )
126
-
127
- # step3: find moho index
128
- moho_idx = find_moho_depth(vs,
129
- depth,
130
- [5,90], # range of moho index
131
- gradient_search=False,
132
- gradient_threshold=0.01)
133
-
134
- # step4: augment the vs model
135
- perturb_nums = 100
136
- vs_augmented = p_map(augment_crust_moho_mantle,
137
- [vs]*perturb_nums,
138
- list(depth.reshape(1,-1))*perturb_nums,
139
- [moho_idx]*perturb_nums,
140
- [[-0.1,0.1]]*perturb_nums, # relative ratio
141
- [[3,8]]*perturb_nums, # nodes for crust
142
- [[8,15]]*perturb_nums, # nodes for mantle
143
- [3]*perturb_nums, # km
144
- [2]*perturb_nums, # km
145
- [False]*perturb_nums,
146
- np.random.randint(0,1000000,perturb_nums)
147
- )
148
-
149
- # step5: transform the vs model to vp model
150
- vel_models = p_map(transform_vs_to_vel_model,list(vs_augmented),[depth]*len(vs_augmented))
151
-
152
- # step6: calculate the dispersion curve
153
- t = generate_mixed_samples(num_samples=300,start=1,end=100,uniform_num=100,log_num=100,random_num=100)
154
- t = np.ones((len(vel_models),len(t)))*t
155
- disp_data = p_map(calculate_dispersion, vel_models, list(t))
156
- disp_data = np.array(disp_data)
157
- vel_models = np.array(vel_models)
158
-
159
- ```
160
- Details of this example can be found at:
161
-
162
- | Dataset Name | Reference | Link |
163
- |----------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
164
- | OpenSWI-deep-example | - | [OpenSWI-deep-example.ipynb](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/00_OpenSWI-deep-example.ipynb) |
165
- | LITHO1.0 | Pasyanos et al., 2014 | [LITHO1.0](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/12_LITHO1.ipynb) |
166
- | USTClitho1.0 | Xin et al., 2018 | [USTClitho1.0](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/11_USTCLitho1.ipynb) |
167
- | Central-and-Western US | Shen et al., 2013 | [Central-and-Western US](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/13_Central_and_Western_US_Shen2013.ipynb) |
168
- | Continental China | Shen et al., 2016 | [Continental China](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/14_Continental_China_Shen2016.ipynb) |
169
- | US Upper-Mantle | Xie et al., 2018 | [US Upper-Mantle](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/03_US-upper-mantle.ipynb) |
170
- | EUCrust | Lu et al., 2018 | [EUCrust](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/05_EUCrust.ipynb) |
171
- | Alaska | Berg et al., 2020 | [Alaska](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/04_Alaska.ipynb) |
172
- | CSEM-Europe | Blom et al., 2020; Fichtner et al., 2018; Çubuk-Sabuncu et al., 2017 | [CSEM-Europe](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/02_CSEM_Europe.ipynb) |
173
- | CSEM-Eastmed | Blom et al., 2020; Fichtner et al., 2018 | [CSEM-Eastmed](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/01_CSEM_Eastmed.ipynb) |
174
- | CSEM-Iberian | Fichtner et al., 2018; Fichtner et al., 2015 | [CSEM-Iberian](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/09_CSEM_lberia.ipynb) |
175
- | CSEM-South Atlantic | Fichtner et al., 2018; Colli et al., 2013 | [CSEM-South Atlantic](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/07_CSEM_North_Atlantic.ipynb) |
176
- | CSEM-North Atlantic | Fichtner et al., 2018; Krischer et al., 2018 | [CSEM-North Atlantic](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/07_CSEM_North_Atlantic.ipynb) |
177
- | CSEM-Japan | Fichtner et al., 2018; Simutė et al., 2016 | [CSEM-Japan](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/08_CSEM_Japan.ipynb) |
178
- | CSEM-Australasia | Fichtner et al., 2018; Fichtner et al., 2010 | [CSEM-Australasia](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/10_CSEM_Australasia.ipynb) |
179
-
180
- ----
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SWIDP/__init__.py DELETED
File without changes
SWIDP/diffusion_aug_2d.py DELETED
@@ -1,298 +0,0 @@
1
- import numpy as np
2
- from SWIDP.process_1d_shallow import combine_same_vs, perturb_vs_depth, smooth_vs_by_node_interp
3
- from scipy.interpolate import interp1d
4
-
5
- # -------------------------------------------------------
6
- # extract the 1D profile from the 2D model
7
- # -------------------------------------------------------
8
- def extract_1d_profile(vs_model,station_idx=None,method="mean"):
9
- """extract the 1D profile from the 2D model
10
- Args:
11
- vs_model: 2D array [n_depth,n_x]
12
- => shear velocity model
13
- method: str
14
- => method to extract the 1D profile
15
- Returns:
16
- vs_profile: 2D array [n_sta,n_depth]
17
- => shear velocity profile
18
- """
19
- if method == "mean":
20
- vs_profile = np.mean(vs_model,axis=1)
21
- vs_profile = vs_profile.reshape(1,-1)
22
- elif method == "st" and isinstance(station_idx,int): # single station
23
- vs_profile = vs_model[:,station_idx]
24
- vs_profile = vs_profile.reshape(1,-1)
25
- elif method == "mt" and isinstance(station_idx,list):
26
- vs_profile = vs_model[:,station_idx]
27
- vs_profile = vs_profile.T
28
- elif method == "random": # random station
29
- vs_profile = vs_model[:,np.random.randint(0,vs_model.shape[1])]
30
- vs_profile = vs_profile.reshape(1,-1)
31
- elif method == "all": # all stations
32
- vs_profile = vs_model
33
- vs_profile = vs_profile.T
34
- else:
35
- raise ValueError(f"Invalid method: {method}")
36
- return vs_profile
37
-
38
-
39
- # -------------------------------------------------------
40
- # normalize & denormalize the shear velocity
41
- # -------------------------------------------------------
42
- def max_min_normalize(vs):
43
- """Normalize shear velocity.
44
- Args:
45
- vs: 1D array
46
- => shear velocity (km/s)
47
- Returns:
48
- vs: 1D array
49
- => normalized shear velocity (0-1)
50
- """
51
- vs = np.array(vs)
52
- vs = (vs-np.min(vs))/(np.max(vs)-np.min(vs))
53
- return vs
54
-
55
- def max_min_denormalize(vs, vmin=0.2, vmax=3.2):
56
- """Denormalize shear velocity.
57
- Args:
58
- vs: 1D array
59
- => normalized shear velocity (0-1)
60
- vmin: float,
61
- => minimum shear velocity (km/s)
62
- vmax: float,
63
- => maximum shear velocity (km/s)
64
- Returns:
65
- vs: 1D array
66
- => shear velocity (km/s)
67
- """
68
- vs = np.array(vs)
69
- # make sure the vs is normalized
70
- vs = max_min_normalize(vs)
71
-
72
- # denormalize to [vmin,vmax]
73
- vs = vs*(vmax-vmin)+vmin
74
- return vs
75
-
76
- # -------------------------------------------------------
77
- # interpolate the shear velocity
78
- # -------------------------------------------------------
79
- def interpolate_vs(vs,depth,depth_interp,kind="previous"):
80
- """interpolate the shear velocity
81
- Args:
82
- vs: 1D array
83
- => shear velocity (km/s)
84
- """
85
- # padding the last layer of depth and vs larger than depth_interp
86
- eps = 0.01
87
- if depth.max() < depth_interp.max():
88
- vs = np.insert(vs,len(vs),vs[-1])
89
- depth = np.insert(depth,len(depth),depth_interp[-1]+eps)
90
- elif depth.min() > depth_interp.min():
91
- vs = np.insert(vs,0,vs[0])
92
- depth = np.insert(depth,0,depth[0]-eps)
93
-
94
- # interpolate the shear velocity
95
- f = interp1d(depth,vs,kind=kind)
96
- vs_interp = f(depth_interp)
97
- return vs_interp
98
-
99
- # -------------------------------------------------------
100
- # extract 1D profile and interpolation
101
- # -------------------------------------------------------
102
-
103
- def diffusion_extract_process(vs_model,
104
- extract_station_idx=None,
105
- extract_method="mean",
106
- denorm_vmin_range=[0.2,0.5],
107
- denorm_vmax_range=[2.5,3.5],
108
- combine_vel_threshold=0.1,
109
- interp_depth=None,
110
- interp_kind="previous",
111
- smooth_vel=False,
112
- smooth_nodes=10,
113
- smooth_kind="pchip",
114
- ):
115
- """diffusion extract process
116
- Args:
117
- vs_model: 2D array [n_depth,n_x]
118
- => shear velocity model
119
- extract_station_idx: int,
120
- => station index
121
- extract_method: str
122
- => method to extract the 1D profile
123
- denorm_vmin: float
124
- => minimum shear velocity (km/s)
125
- denorm_vmax: float
126
- => maximum shear velocity (km/s)
127
- combine_vel_threshold: float
128
- => velocity threshold for combining the same vs
129
- interp_depth: 1D array
130
- => target depth for interpolation
131
- interp_kind: str
132
- => kind of interpolation
133
- smooth_vel: bool
134
- => whether to smooth the vs
135
- smooth_nodes: int
136
- => number of nodes for smoothing
137
- smooth_kind: str
138
- => kind of smoothing
139
- Returns:
140
- vs_aug: 2D array [n_sta,n_depth]
141
- => extracted shear velocity
142
- depth_aug: 2D array [n_sta,n_depth]
143
- => extracted depth
144
- """
145
- # Step 1: extract the 1D profile
146
- vs_profiles = extract_1d_profile(vs_model,extract_station_idx,extract_method)
147
- depth = np.arange(vs_profiles.shape[-1])*0.04
148
-
149
- if interp_depth is None:
150
- interp_depth = depth
151
-
152
- vs_aug,depth_aug = [],[]
153
-
154
- for i in range(vs_profiles.shape[0]):
155
- vs_profile = vs_profiles[i,:]
156
-
157
- # Step 2: de-normalize the shear velocity
158
- denorm_vmin = np.random.uniform(denorm_vmin_range[0],denorm_vmin_range[1])
159
- denorm_vmax = np.random.uniform(denorm_vmax_range[0],denorm_vmax_range[1])
160
- vs_denormed = max_min_denormalize(vs_profile,denorm_vmin,denorm_vmax)
161
-
162
- # Step 3: combine the same vs
163
- vs_combined,depth_combined = combine_same_vs(vs_denormed,depth,combine_vel_threshold)
164
-
165
- # step 4: smooth the vs
166
- if smooth_vel:
167
- vs_smooth = smooth_vs_by_node_interp(vs_combined,depth_combined,n_nodes=smooth_nodes,method=smooth_kind)
168
- else:
169
- vs_smooth = vs_combined
170
-
171
- # Step 5: interpolate the shear velocity
172
- vs_interpolated = interpolate_vs(vs_smooth,depth_combined,interp_depth,interp_kind)
173
-
174
- vs_aug.extend(vs_interpolated)
175
- depth_aug.extend(interp_depth)
176
-
177
- vs_aug = np.array(vs_aug).reshape(-1,len(interp_depth)) # [n_sta,n_depth]
178
- depth_aug = np.array(depth_aug).reshape(-1,len(interp_depth)) # [n_sta,n_depth]
179
- return vs_aug,depth_aug
180
-
181
- # -------------------------------------------------------
182
- # augmentation 1D profile
183
- # -------------------------------------------------------
184
-
185
- def diffusion_aug_extract_process(vs_model,
186
- extract_station_idx=None,
187
- extract_method="mean",
188
- denorm_vmin_range=[0.2,0.5],
189
- denorm_vmax_range=[2.5,3.5],
190
- combine_vel_threshold=0.1,
191
- interp_depth=np.arange(70)*0.04,
192
- interp_kind="previous",
193
- smooth_vel=False,
194
- smooth_nodes=10,
195
- smooth_kind="pchip",
196
- aug_nums = 100,
197
- aug_vs_probility=0.05,
198
- aug_thickness_probility=0.1,
199
- aug_vel_threshold=0.1,
200
- smooth_aug_vel=False,
201
- smooth_aug_nodes=10,
202
- smooth_aug_kind="pchip",
203
- ):
204
- """diffusion augmentation extract process
205
- Args:
206
- vs_model: 2D array [n_depth,n_x]
207
- => shear velocity model
208
- extract_station_idx: int,
209
- => station index
210
- extract_method: str
211
- => method to extract the 1D profile
212
- denorm_vmin: float
213
- => minimum shear velocity (km/s)
214
- denorm_vmax: float
215
- => maximum shear velocity (km/s)
216
- combine_vel_threshold: float
217
- => velocity threshold for combining the same vs
218
- interp_depth: 1D array
219
- => target depth for interpolation
220
- interp_kind: str
221
- => kind of interpolation
222
- smooth_vel: bool
223
- => whether to smooth the vs
224
- smooth_nodes: int
225
- => number of nodes for smoothing
226
- smooth_kind: str
227
- => kind of smoothing
228
- aug_nums: int
229
- => number of augmentation
230
- aug_vs_probility: float
231
- => probability of vs perturbation
232
- aug_thickness_probility: float
233
- => probability of thickness perturbation
234
- aug_vel_threshold: float
235
- => velocity threshold for removing the thin layers
236
- aug_min_layers_num: int
237
- => minimum number of layers
238
- smooth_aug_vel: bool
239
- => whether to smooth the augmented vs
240
- smooth_aug_nodes: int
241
- => number of nodes for smoothing the augmented vs
242
- smooth_aug_kind: str
243
- => kind of smoothing the augmented vs
244
- Returns:
245
- vs_aug: 3D array [n_sta,n_aug,n_depth]
246
- => augmented shear velocity
247
- depth_aug: 3D array [n_sta,n_aug,n_depth]
248
- => augmented depth
249
- """
250
- # Step 1: extract the 1D profile
251
- vs_profiles = extract_1d_profile(vs_model,extract_station_idx,extract_method)
252
- depth = np.arange(vs_profiles.shape[-1])*0.04
253
-
254
- vs_aug,depth_aug = [],[]
255
-
256
- for i in range(vs_profiles.shape[0]):
257
- vs_profile = vs_profiles[i,:]
258
-
259
- # Step 2: de-normalize the shear velocity
260
- denorm_vmin = np.random.uniform(denorm_vmin_range[0],denorm_vmin_range[1])
261
- denorm_vmax = np.random.uniform(denorm_vmax_range[0],denorm_vmax_range[1])
262
- vs_denormed = max_min_denormalize(vs_profile,denorm_vmin,denorm_vmax)
263
-
264
- # Step 3: combine the same vs
265
- vs_combined,depth_combined = combine_same_vs(vs_denormed,depth,combine_vel_threshold)
266
-
267
- # step 4: smooth the vs
268
- if smooth_vel:
269
- vs_smooth = smooth_vs_by_node_interp(vs_combined,depth_combined,n_nodes=smooth_nodes,method=smooth_kind)
270
- else:
271
- vs_smooth = vs_combined
272
-
273
- # Step 5: augmentation 1D profile
274
- vs_aug_st,depth_aug_st = [],[]
275
- for j in range(aug_nums):
276
- if j == 0:
277
- vs_aug_1d = vs_smooth
278
- depth_aug_1d = depth_combined
279
- else:
280
- vs_aug_1d,depth_aug_1d = perturb_vs_depth(vs_smooth,depth_combined,
281
- vs_perturbation=aug_vs_probility,
282
- thickness_perturbation=aug_thickness_probility,
283
- vel_threshold=aug_vel_threshold)
284
-
285
- # Step 6: interpolate the shear velocity
286
- vs_interpolated = interpolate_vs(vs_aug_1d,depth_aug_1d,interp_depth,interp_kind)
287
-
288
- # step 7: smooth the augmented shear velocity
289
- if smooth_aug_vel:
290
- vs_interpolated = smooth_vs_by_node_interp(vs_interpolated,interp_depth,n_nodes=smooth_aug_nodes,method=smooth_aug_kind)
291
- vs_aug_st.append(vs_interpolated)
292
- depth_aug_st.append(interp_depth)
293
- vs_aug.append(np.array(vs_aug_st))
294
- depth_aug.append(np.array(depth_aug_st))
295
-
296
- vs_aug = np.array(vs_aug) # [n_sta,n_aug,n_depth]
297
- depth_aug = np.array(depth_aug) # [n_sta,n_aug,n_depth]
298
- return vs_aug,depth_aug
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SWIDP/dispersion.py DELETED
@@ -1,367 +0,0 @@
1
- """This file is used to calculate the dispersion curve based on the given velocity model.
2
- The original dispersion curve forward modeling procedure is based on the CPS330 software
3
- https://www.eas.slu.edu/eqc/ComputerProgramsSeismology/index.html
4
- The dispersion curve is calculated by the disba package:
5
- https://github.com/keurfonluu/disba
6
- The transform of velocity model is based on the Brocher (2005) model.
7
- [1] T. M. Brocher, “Empirical relations between elastic wavespeeds and density in the earth’s crust,”
8
- Bull. Seismol. Soc. Amer., vol. 95, no. 6, pp. 2081–2092, Dec. 2005, doi: 10.1785/0120050077.
9
- """
10
-
11
- import numpy as np
12
- from disba import PhaseDispersion,GroupDispersion
13
- from scipy.interpolate import interp1d
14
-
15
- # -------------------------------------------------------
16
- # calculate the dispersion curve
17
- # -------------------------------------------------------
18
- def calculate_dispersion(vel_model,t=None,dc=0.001):
19
- """calculate the dispersion curve
20
- Args:
21
- vel_model: 2D numpy array
22
- => the velocity model (depth, vp, vs, rho)
23
- t: 1D numpy array
24
- => the periods (s)
25
- dc: float
26
- => the sampling interval (km/s) for search the dispersion curve
27
- Returns:
28
- dispersion_curve: 2D numpy array
29
- => the dispersion curve (period, phase velocity, group velocity)
30
- """
31
- # transform the depth to the thickness
32
- depth, vp, vs, rho = vel_model.T
33
- thickness = np.diff(depth)
34
- thickness = np.append(thickness, thickness[-1])
35
- vel_model = np.column_stack((thickness, vp, vs, rho))
36
- vel_model = vel_model.astype(np.float64)
37
-
38
- if t is None:
39
- # Periods must be sorted starting with low periods
40
- t = generate_mixed_samples(num_samples=100,start=0.2,end=10,uniform_num=50,log_num=20,random_num=30)
41
-
42
- # Compute the 3 first Rayleigh- and Love- wave modal dispersion curves
43
- try:
44
- pd = PhaseDispersion(*vel_model.T, dc=dc)
45
- gd = GroupDispersion(*vel_model.T, dc=dc)
46
- phase_disp = [pd(t, mode=i, wave="rayleigh") for i in range(1)]
47
- group_disp = [gd(t, mode=i, wave='rayleigh') for i in range(1)]
48
-
49
- phase_period,phase_vel = phase_disp[0].period,phase_disp[0].velocity
50
- group_period,group_vel = group_disp[0].period,group_disp[0].velocity
51
-
52
- if len(phase_period) != len(t) or len(group_period) != len(t):
53
- phase_period = np.zeros(len(t))
54
- group_period = np.zeros(len(t))
55
- phase_vel = np.zeros(len(t))
56
- group_vel = np.zeros(len(t))
57
- t = np.zeros(len(phase_vel))
58
- except Exception as e:
59
- # If any error occurs during computation, return arrays of zeros
60
- phase_vel = np.zeros(len(t))
61
- group_vel = np.zeros(len(t))
62
- t = np.zeros(len(phase_vel))
63
- return np.hstack((t.reshape(-1,1),phase_vel.reshape(-1,1),group_vel.reshape(-1,1)))
64
-
65
- # -------------------------------------------------------
66
- # generate the periods position
67
- # -------------------------------------------------------
68
- def generate_mixed_samples(num_samples, start=0.5, end=5, uniform_num=100, log_num=100, random_num=100):
69
- """generate periods position
70
- Args:
71
- num_samples: int
72
- => the number of periods
73
- start: float
74
- => the start period (s)
75
- end: float
76
- => the end period (s)
77
- uniform_num: int
78
- => the number of uniform sampling points
79
- log_num: int
80
- => the number of logarithmic sampling points
81
- random_num: int
82
- => the number of random sampling points
83
- Returns:
84
- t_final_sorted: 1D numpy array
85
- => the sorted periods (s)
86
- """
87
- # Uniform sampling
88
- t_uniform = np.linspace(start, end, num=uniform_num)
89
- # Logarithmic sampling
90
- t_log = 1/np.logspace(np.log10(1/end), np.log10(1/start), num=log_num)
91
- # Random sampling
92
- t_random = np.random.uniform(start, end, size=random_num)
93
-
94
- # Remove duplicates
95
- t_uniform_unique = np.unique(t_uniform)
96
- t_log_unique = np.unique(t_log)
97
- t_random_unique = np.unique(t_random)
98
-
99
- # Combine all unique sampling points
100
- t_combined = np.concatenate((t_uniform_unique, t_log_unique, t_random_unique))
101
- t_combined_unique = np.unique(t_combined)
102
-
103
- # Adjust final number of sampling points
104
- if len(t_combined_unique) > num_samples:
105
- t_final = np.random.choice(t_combined_unique, size=num_samples, replace=False)
106
- elif len(t_combined_unique) < num_samples:
107
- extra_samples = np.random.uniform(start, end, size=num_samples - len(t_combined_unique))
108
- t_final = np.concatenate((t_combined_unique, extra_samples))
109
- t_final = np.unique(t_final)
110
- else:
111
- t_final = t_combined_unique
112
-
113
- # Sort
114
- t_final_sorted = np.sort(t_final)
115
-
116
- return t_final_sorted
117
-
118
- # -------------------------------------------------------
119
- # transform the velocity model (Brocher, 2005)
120
- # -------------------------------------------------------
121
- def transform_vp_to_vs(vp):
122
- """transform the P-wave velocity to S-wave velocity (Brocher, 2005)
123
- Args:
124
- vp: 1D/2D numpy array
125
- => P-wave velocity (km/s)
126
- Returns:
127
- vs: 1D/2D numpy array
128
- => S-wave velocity (km/s)
129
- """
130
- vs = 0.7858 - 1.2344*vp + 0.7949*vp**2 - 0.1238*vp**3 + 0.0064*vp**4
131
- return vs
132
-
133
- def transform_vs_to_vp(vs):
134
- """transform the S-wave velocity to P-wave velocity (Brocher, 2005)
135
- Args:
136
- vs: 1D/2D numpy array
137
- => S-wave velocity (km/s)
138
- Returns:
139
- vp: 1D/2D numpy array
140
- => P-wave velocity (km/s)
141
- """
142
- vp = 0.9409 + 2.0947*vs - 0.8206*vs**2+ 0.2683*vs**3 - 0.0251*vs**4
143
- return vp
144
-
145
- def transform_vp_to_rho(vp):
146
- """transform the P-wave velocity to density (Brocher, 2005)
147
- Args:
148
- vp: 1D/2D numpy array
149
- => P-wave velocity (km/s)
150
- Returns:
151
- rho: 1D/2D numpy array
152
- => density (g/cm^3)
153
- """
154
- rho = 1.6612*vp - 0.4721*vp**2 + 0.0671*vp**3 - 0.0043*vp**4 + 0.000106*vp**5
155
- return rho
156
-
157
- def transform_vs_to_vel_model(vs,depth=None):
158
- """transform the S-wave velocity to velocity model (Brocher, 2005)
159
- Args:
160
- vs: 1D numpy array
161
- => S-wave velocity (km/s)
162
- depth: 1D numpy array
163
- => depth (km)
164
- Returns:
165
- vel_model: 2D numpy array
166
- => the velocity model (depth, vp, vs, rho)
167
- """
168
- if depth is None:
169
- depth = np.arange(0, vs.shape[-1])*0.04
170
- vp = transform_vs_to_vp(vs)
171
-
172
- # depth > 120 km, the P-wave velocity is equal to the S-wave velocity * 1.79
173
- mask = depth>120
174
- vp[mask] = vs[mask]*1.79
175
- rho = transform_vp_to_rho(vp)
176
- vel_model = np.column_stack((depth, vp, vs, rho))
177
- return vel_model
178
-
179
- def transform_vp_to_vel_model(vp,depth=None):
180
- """get the velocity model (Brocher, 2005)
181
- Args:
182
- vp: 1D numpy array
183
- => P-wave velocity (km/s)
184
- depth: 1D numpy array
185
- => depth (km)
186
- Returns:
187
- vel_model: 2D numpy array
188
- => the velocity model (depth, vp, vs, rho)
189
- """
190
- if depth is None:
191
- depth = np.arange(0, vp.shape[-1])*0.04
192
- vs = transform_vp_to_vs(vp)
193
- rho = transform_vp_to_rho(vp)
194
- vel_model = np.column_stack((depth, vp, vs, rho))
195
- return vel_model
196
-
197
- # -------------------------------------------------------
198
- # interpolate the velocity model
199
- # -------------------------------------------------------
200
- def interpolate_vel_model(vel_model,depth_new,interp_method="nearest"):
201
- """interpolate the velocity model
202
- Args:
203
- vel_model: 2D numpy array
204
- => the velocity model (depth, vp, vs, rho)
205
- depth_new: 1D numpy array
206
- => the new depth (km)
207
- interp_method: str
208
- => the interpolation method
209
- Returns:
210
- vel_model: 2D numpy array
211
- => the velocity model (depth, vp, vs, rho)
212
- """
213
- depth,vp,vs,rho = vel_model.T
214
- f_vp = interp1d(depth,vp,kind=interp_method,fill_value=vp[-1],bounds_error=False)
215
- f_vs = interp1d(depth,vs,kind=interp_method,fill_value=vs[-1],bounds_error=False)
216
- f_rho = interp1d(depth,rho,kind=interp_method,fill_value=rho[-1],bounds_error=False)
217
- vp_new = f_vp(depth_new)
218
- vs_new = f_vs(depth_new)
219
- rho_new = f_rho(depth_new)
220
- vel_model_new = np.column_stack((depth_new,vp_new,vs_new,rho_new))
221
- return vel_model_new
222
-
223
- # -------------------------------------------------------
224
- # generate the initial model based on empirical formula
225
- # -------------------------------------------------------
226
- def gen_init_model(t,cg_obs,thick,area=False):
227
- """
228
- generate the initial model based on empirical formula
229
- developed by Thomas M.Brocher (2005).
230
- ---------------------
231
- Input Parameters:
232
- t : 1D numpy array
233
- => period of observaton dispersion points
234
- cg_obs: 1D numpy array
235
- => phase velocity of observation dispersion points
236
- thick : 1D numpy array
237
- => thickness of each layer
238
- Output: the initialize model
239
- thick : 1D numpy array
240
- => thickness
241
- vs : 1D numpy array
242
- => the shear wave velocity
243
- vp : 1D numpy array
244
- => the compress wave velocity
245
- rho: 1D numpy array
246
- => the density
247
- --------------------
248
- Output parameters:
249
- model:Dict
250
- => the generated model
251
- """
252
- wavelength = t*cg_obs
253
- nlayer = len(thick)
254
- lambda2L = 0.65 # the depth faction 0.63L
255
- beta = 0.92 # the poisson's ratio
256
- eqv_lambda = lambda2L*wavelength
257
- lay_model = np.zeros((nlayer,2))
258
- lay_model[:,0] = thick
259
- for i in range(nlayer-1):
260
- if i == 0:
261
- up_bound = 0
262
- else:
263
- up_bound = up_bound + lay_model[i-1,0] # the top-layer's depth
264
- low_bound = up_bound + lay_model[i,0] # the botton-layer's depth
265
- # vs for every layer
266
- lambda_idx = np.argwhere((eqv_lambda>up_bound) & (eqv_lambda<low_bound))
267
- if len(lambda_idx)>0:
268
- lay_model[i,1] = np.max(cg_obs[lambda_idx])/beta # phase velocity -> vs
269
- else:
270
- lambda_idx = np.argmin(np.abs(eqv_lambda - low_bound))
271
- lay_model[i,1] = cg_obs[lambda_idx]/beta
272
- # set the last layer
273
- lay_model[nlayer-1,0] = 0
274
- lay_model[nlayer-1,1] = np.max(cg_obs)*1.1
275
- thick = lay_model[:,0]
276
- vs = lay_model[:,1]
277
- vp = transform_vs_to_vp(vs)
278
- depth = np.cumsum(thick)
279
-
280
- mask = depth>120
281
- vp[mask] = vs[mask]*1.79
282
- rho = transform_vp_to_rho(vp)
283
-
284
- model = {
285
- "depth":depth,
286
- "vp":vp,
287
- "vs":vs,
288
- "rho":rho
289
- }
290
- if area:
291
- return np.column_stack((depth,vp,vs,rho))
292
- else:
293
- return model
294
-
295
- # -------------------------------------------------------
296
- # generate the velocity model from the S-wave velocity
297
- # -------------------------------------------------------
298
- def gen_model_from_vs(depth,vs,area=False,Brocher=True):
299
- """
300
- generate the initial model based on empirical formula
301
- developed by Thomas M.Brocher (2005).
302
- ---------------------
303
- Input Parameters:
304
- thick : Array(1D)
305
- => the thickness of layer
306
- vs : Array(1D)
307
- => the shear wave velocity
308
- area : boolen
309
- => the output format
310
- --------------------
311
- Output parameters:
312
- model:Dict
313
- the generated model
314
- """
315
- depth = np.array(depth)
316
- thickness = np.diff(depth)
317
- thickness = np.insert(thickness,-1,thickness[-1])
318
- vs = np.array(vs)
319
- if Brocher:
320
- vp = transform_vs_to_vp(vs)
321
- else:
322
- vp = 1.79*vs
323
- mask = depth>120
324
- vp[mask] = vs[mask]*1.79
325
- rho = transform_vp_to_rho(vp)
326
- model = {
327
- "depth":depth,
328
- "vp":vp,
329
- "vs":vs,
330
- "rho":rho
331
- }
332
- if area:
333
- return np.column_stack((depth, vp, vs, rho))
334
- else:
335
- return model
336
-
337
- # -------------------------------------------------------
338
- # smooth the data
339
- # -------------------------------------------------------
340
- def smooth_data(y, window_size=7):
341
- """
342
- Smooth the input data using a moving average filter, with padding to reduce edge effects.
343
-
344
- Parameters:
345
- y (array-like): The input data to be smoothed.
346
- window_size (int): Size of the moving average window (default is 7).
347
-
348
- Returns:
349
- y_smooth (array-like): Smoothed data.
350
- """
351
-
352
- # Save the first data point to preserve it after smoothing
353
- first_point = y[0]
354
-
355
- # Create a moving average window (a window of ones normalized by the window size)
356
- window = np.ones(window_size) / window_size
357
-
358
- # Pad the input data using 'reflect' mode to minimize edge effects during convolution
359
- y_padded = np.pad(y, (window_size // 2, window_size // 2), mode='reflect')
360
-
361
- # Apply the convolution between the padded data and the smoothing window
362
- y_smooth = np.convolve(y_padded, window, mode='valid')
363
-
364
- # Replace the first point of the smoothed data with the original first point
365
- y_smooth[0] = first_point
366
-
367
- return y_smooth
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SWIDP/download_2d_3d_model.py DELETED
@@ -1,31 +0,0 @@
1
- # Notice
2
- # We provide the following download links for the datasets used in this work.
3
- # However, we strongly encourage users to properly credit the original studies when using these datasets in any research or derivative work.
4
- # Please also carefully read the official documentation of each dataset on their corresponding websites to fully understand the data description, quality control, and usage constraints.
5
-
6
- # Datasets links
7
-
8
- # 1. SWI-shallow from OpenFWI
9
- # https://openfwi-lanl.github.io/docs/data.html
10
- # Flat: https://drive.google.com/drive/folders/1NIdjiYhjWSV9NHn7ZEFYTpJxzvzxqYRb?usp=sharing
11
- # Fold: https://drive.google.com/drive/folders/1NGXnVG0gUFHfDcUvJxfozCgiI4WwquVk?usp=sharing
12
- # Flat-Fault: https://drive.google.com/drive/folders/1jOB6R_zewuFj5wZam7nDP7GixQnbnRLR?usp=sharing
13
- # Fold-Fault: https://drive.google.com/drive/folders/1vqUHJ-iRwp3ozL-e4HhKGpdO0e7NQZE1?usp=sharing
14
- # Field: https://drive.google.com/drive/folders/1CQceUL5ITTHV-PRqbIzkyZwCDdUk0XkU?usp=sharing
15
-
16
- # 2. OpenSWI-deep from 14 global and regional 3D velocity models
17
- # LITHO1.0: https://igppweb.ucsd.edu/~gabi/litho1.0.html
18
- # USTClitho1.0: http://chinageorefmodel.org/wp-content/uploads/china-models-individual/USTClitho1.0.zip
19
- # Central-and-Western-US: http://ciei.colorado.edu/Models/US_4/WCUS_Shen_2012.zip
20
- # Continental-China: http://ciei.colorado.edu/Models/China_Shen_2015/China_2015_Vs_v1.0.tar
21
- # US-Upper-Mantle: http://ds.iris.edu/ds/products/emc-us-upper-mantle-vsxiechuyang2018/
22
- # Alaska: https://ds.iris.edu/ds/products/emc-alaskajointinversion_rfvphhv-1berg2020/
23
- # LSP-Eucrust1.0: https://ds.iris.edu/ds/products/emc-lsp_eucrust10/
24
- # CSRM-Eastern Mediterranean: https://ds.iris.edu/spud/earthmodel/18027082
25
- # CSEM-Europe: https://ds.iris.edu/spud/earthmodel/18027090
26
- # CSEM-South-Atlantic: http://ds.iris.edu/ds/products/emc-csem_south_atlantic
27
- # CSEM-North-Atlantic: http://ds.iris.edu/ds/products/emc-csem_north_atlantic
28
- # CSEM-japan: http://ds.iris.edu/ds/products/emc-csem_japan
29
- # CSEM-iberia: http://ds.iris.edu/ds/products/emc-csem_iberia
30
- # CSEM-Australasia: http://ds.iris.edu/ds/products/emc-csem_australasia
31
-