liufeng
commited on
Commit
·
316e22d
1
Parent(s):
d346e50
move Datasets Construction Details to Github
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/00_OpenSWI-deep-example.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/01_CSEM_Eastmed.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/02_CSEM_Europe.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/03_US-upper-mantle.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/04_Alaska.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/05_EUCrust.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/06_CSEM_South_Atlantic.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/07_CSEM_North_Atlantic.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/08_CSEM_Japan.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/09_CSEM_lberia.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/10_CSEM_Australasia.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/11_USTCLitho1.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/12_LITHO1.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/13_Central_and_Western_US_Shen2013.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/14_Continental_China_Shen2016.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Aug/vs_demo.txt +0 -301
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/01_CSEM_Eastmed.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/02_CSEM_Europe.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/03_US-upper-mantle.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/04_Alaska.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/05_EUCrust1.0.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/06_CSEM_South_Atlantic.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/07_CSEM_North_Atlantic.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/08_CSEM_Japan.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/09_CSEM_lberia.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/10_CSEM_Australasia.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/11_USTCLitho1.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/12_LITHO1.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/13_Central_and_Western_US-Shen2013.ipynb +0 -0
- Datasets-Construction/OpenSWI-deep/1s-100s-Base/14_Continental-China-Shen2016.ipynb +0 -0
- Datasets-Construction/OpenSWI-real/CSRM/01_CSRM_Real.ipynb +0 -0
- Datasets-Construction/OpenSWI-real/LongBeanch/01_longBeach.ipynb +0 -0
- Datasets-Construction/OpenSWI-real/LongBeanch/Backup/02_syn_longBeach.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/00_OpenSWI-shallow-example.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_1_OpenFWI-FlatVel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_2_OpenFWI-FlatFault-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_3_OpenFWI-CurveVel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_4_OpenFWI-CurveFault-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_5_OpenFWI-Style-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/vp_demo.txt +0 -70
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_1_OpenFWI-FlatVel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_2_OpenFWI-FlatFault-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_3_OpenFWI-CurveVel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_4_OpenFWI-CurveFault-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_5_OpenFWI-Style-A.ipynb +0 -0
- SWIDP/README.md +0 -180
- SWIDP/__init__.py +0 -0
- SWIDP/diffusion_aug_2d.py +0 -298
- SWIDP/dispersion.py +0 -367
- SWIDP/download_2d_3d_model.py +0 -31
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/00_OpenSWI-deep-example.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/01_CSEM_Eastmed.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/02_CSEM_Europe.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/03_US-upper-mantle.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/04_Alaska.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/05_EUCrust.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/06_CSEM_South_Atlantic.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/07_CSEM_North_Atlantic.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/08_CSEM_Japan.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/09_CSEM_lberia.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/10_CSEM_Australasia.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/11_USTCLitho1.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/12_LITHO1.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/13_Central_and_Western_US_Shen2013.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/14_Continental_China_Shen2016.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Aug/vs_demo.txt
DELETED
@@ -1,301 +0,0 @@
|
|
1 |
-
0.0000 3.1342
|
2 |
-
1.0000 3.1342
|
3 |
-
2.0000 3.1342
|
4 |
-
3.0000 3.1342
|
5 |
-
4.0000 3.1342
|
6 |
-
5.0000 3.1342
|
7 |
-
6.0000 3.1345
|
8 |
-
7.0000 3.1345
|
9 |
-
8.0000 3.1345
|
10 |
-
9.0000 3.1345
|
11 |
-
10.0000 3.1345
|
12 |
-
11.0000 3.1345
|
13 |
-
12.0000 3.1345
|
14 |
-
13.0000 3.1345
|
15 |
-
14.0000 3.1345
|
16 |
-
15.0000 3.1345
|
17 |
-
16.0000 3.9061
|
18 |
-
17.0000 3.9061
|
19 |
-
18.0000 3.9061
|
20 |
-
19.0000 3.9061
|
21 |
-
20.0000 3.9061
|
22 |
-
21.0000 3.9061
|
23 |
-
22.0000 3.9061
|
24 |
-
23.0000 3.9061
|
25 |
-
24.0000 3.9061
|
26 |
-
25.0000 3.9061
|
27 |
-
26.0000 4.3299
|
28 |
-
27.0000 4.3299
|
29 |
-
28.0000 4.3299
|
30 |
-
29.0000 4.3299
|
31 |
-
30.0000 4.3299
|
32 |
-
31.0000 4.3299
|
33 |
-
32.0000 4.3299
|
34 |
-
33.0000 4.3299
|
35 |
-
34.0000 4.3299
|
36 |
-
35.0000 4.3299
|
37 |
-
36.0000 4.4193
|
38 |
-
37.0000 4.4193
|
39 |
-
38.0000 4.4193
|
40 |
-
39.0000 4.4193
|
41 |
-
40.0000 4.4193
|
42 |
-
41.0000 4.4193
|
43 |
-
42.0000 4.4193
|
44 |
-
43.0000 4.4193
|
45 |
-
44.0000 4.4193
|
46 |
-
45.0000 4.4193
|
47 |
-
46.0000 4.4396
|
48 |
-
47.0000 4.4396
|
49 |
-
48.0000 4.4396
|
50 |
-
49.0000 4.4396
|
51 |
-
50.0000 4.4396
|
52 |
-
51.0000 4.4396
|
53 |
-
52.0000 4.4396
|
54 |
-
53.0000 4.4396
|
55 |
-
54.0000 4.4396
|
56 |
-
55.0000 4.4396
|
57 |
-
56.0000 4.4369
|
58 |
-
57.0000 4.4369
|
59 |
-
58.0000 4.4369
|
60 |
-
59.0000 4.4369
|
61 |
-
60.0000 4.4369
|
62 |
-
61.0000 4.4369
|
63 |
-
62.0000 4.4369
|
64 |
-
63.0000 4.4369
|
65 |
-
64.0000 4.4369
|
66 |
-
65.0000 4.4369
|
67 |
-
66.0000 4.4306
|
68 |
-
67.0000 4.4306
|
69 |
-
68.0000 4.4306
|
70 |
-
69.0000 4.4306
|
71 |
-
70.0000 4.4306
|
72 |
-
71.0000 4.4306
|
73 |
-
72.0000 4.4306
|
74 |
-
73.0000 4.4306
|
75 |
-
74.0000 4.4306
|
76 |
-
75.0000 4.4306
|
77 |
-
76.0000 4.4185
|
78 |
-
77.0000 4.4185
|
79 |
-
78.0000 4.4185
|
80 |
-
79.0000 4.4185
|
81 |
-
80.0000 4.4185
|
82 |
-
81.0000 4.4185
|
83 |
-
82.0000 4.4185
|
84 |
-
83.0000 4.4185
|
85 |
-
84.0000 4.4185
|
86 |
-
85.0000 4.4185
|
87 |
-
86.0000 4.4073
|
88 |
-
87.0000 4.4073
|
89 |
-
88.0000 4.4073
|
90 |
-
89.0000 4.4073
|
91 |
-
90.0000 4.4073
|
92 |
-
91.0000 4.4073
|
93 |
-
92.0000 4.4073
|
94 |
-
93.0000 4.4073
|
95 |
-
94.0000 4.4073
|
96 |
-
95.0000 4.4073
|
97 |
-
96.0000 4.3917
|
98 |
-
97.0000 4.3917
|
99 |
-
98.0000 4.3917
|
100 |
-
99.0000 4.3917
|
101 |
-
100.0000 4.3917
|
102 |
-
101.0000 4.3917
|
103 |
-
102.0000 4.3917
|
104 |
-
103.0000 4.3917
|
105 |
-
104.0000 4.3917
|
106 |
-
105.0000 4.3917
|
107 |
-
106.0000 4.3728
|
108 |
-
107.0000 4.3728
|
109 |
-
108.0000 4.3728
|
110 |
-
109.0000 4.3728
|
111 |
-
110.0000 4.3728
|
112 |
-
111.0000 4.3728
|
113 |
-
112.0000 4.3728
|
114 |
-
113.0000 4.3728
|
115 |
-
114.0000 4.3728
|
116 |
-
115.0000 4.3728
|
117 |
-
116.0000 4.3649
|
118 |
-
117.0000 4.3649
|
119 |
-
118.0000 4.3649
|
120 |
-
119.0000 4.3649
|
121 |
-
120.0000 4.3649
|
122 |
-
121.0000 4.3649
|
123 |
-
122.0000 4.3649
|
124 |
-
123.0000 4.3649
|
125 |
-
124.0000 4.3649
|
126 |
-
125.0000 4.3649
|
127 |
-
126.0000 4.3397
|
128 |
-
127.0000 4.3397
|
129 |
-
128.0000 4.3397
|
130 |
-
129.0000 4.3397
|
131 |
-
130.0000 4.3397
|
132 |
-
131.0000 4.3397
|
133 |
-
132.0000 4.3397
|
134 |
-
133.0000 4.3397
|
135 |
-
134.0000 4.3397
|
136 |
-
135.0000 4.3397
|
137 |
-
136.0000 4.3209
|
138 |
-
137.0000 4.3209
|
139 |
-
138.0000 4.3209
|
140 |
-
139.0000 4.3209
|
141 |
-
140.0000 4.3209
|
142 |
-
141.0000 4.3209
|
143 |
-
142.0000 4.3209
|
144 |
-
143.0000 4.3209
|
145 |
-
144.0000 4.3209
|
146 |
-
145.0000 4.3209
|
147 |
-
146.0000 4.3034
|
148 |
-
147.0000 4.3034
|
149 |
-
148.0000 4.3034
|
150 |
-
149.0000 4.3034
|
151 |
-
150.0000 4.3034
|
152 |
-
151.0000 4.3034
|
153 |
-
152.0000 4.3034
|
154 |
-
153.0000 4.3034
|
155 |
-
154.0000 4.3034
|
156 |
-
155.0000 4.3034
|
157 |
-
156.0000 4.2835
|
158 |
-
157.0000 4.2835
|
159 |
-
158.0000 4.2835
|
160 |
-
159.0000 4.2835
|
161 |
-
160.0000 4.2835
|
162 |
-
161.0000 4.2835
|
163 |
-
162.0000 4.2835
|
164 |
-
163.0000 4.2835
|
165 |
-
164.0000 4.2835
|
166 |
-
165.0000 4.2835
|
167 |
-
166.0000 4.2605
|
168 |
-
167.0000 4.2605
|
169 |
-
168.0000 4.2605
|
170 |
-
169.0000 4.2605
|
171 |
-
170.0000 4.2605
|
172 |
-
171.0000 4.2605
|
173 |
-
172.0000 4.2605
|
174 |
-
173.0000 4.2605
|
175 |
-
174.0000 4.2605
|
176 |
-
175.0000 4.2605
|
177 |
-
176.0000 4.2465
|
178 |
-
177.0000 4.2465
|
179 |
-
178.0000 4.2465
|
180 |
-
179.0000 4.2465
|
181 |
-
180.0000 4.2465
|
182 |
-
181.0000 4.2465
|
183 |
-
182.0000 4.2465
|
184 |
-
183.0000 4.2465
|
185 |
-
184.0000 4.2465
|
186 |
-
185.0000 4.2465
|
187 |
-
186.0000 4.2476
|
188 |
-
187.0000 4.2476
|
189 |
-
188.0000 4.2476
|
190 |
-
189.0000 4.2476
|
191 |
-
190.0000 4.2476
|
192 |
-
191.0000 4.2476
|
193 |
-
192.0000 4.2476
|
194 |
-
193.0000 4.2476
|
195 |
-
194.0000 4.2476
|
196 |
-
195.0000 4.2476
|
197 |
-
196.0000 4.4260
|
198 |
-
197.0000 4.4260
|
199 |
-
198.0000 4.4260
|
200 |
-
199.0000 4.4260
|
201 |
-
200.0000 4.4260
|
202 |
-
201.0000 4.4260
|
203 |
-
202.0000 4.4260
|
204 |
-
203.0000 4.4260
|
205 |
-
204.0000 4.4260
|
206 |
-
205.0000 4.4260
|
207 |
-
206.0000 4.2914
|
208 |
-
207.0000 4.2914
|
209 |
-
208.0000 4.2914
|
210 |
-
209.0000 4.2914
|
211 |
-
210.0000 4.2914
|
212 |
-
211.0000 4.2914
|
213 |
-
212.0000 4.2914
|
214 |
-
213.0000 4.2914
|
215 |
-
214.0000 4.2914
|
216 |
-
215.0000 4.2914
|
217 |
-
216.0000 4.3180
|
218 |
-
217.0000 4.3180
|
219 |
-
218.0000 4.3180
|
220 |
-
219.0000 4.3180
|
221 |
-
220.0000 4.3180
|
222 |
-
221.0000 4.3180
|
223 |
-
222.0000 4.3180
|
224 |
-
223.0000 4.3180
|
225 |
-
224.0000 4.3180
|
226 |
-
225.0000 4.3180
|
227 |
-
226.0000 4.3433
|
228 |
-
227.0000 4.3433
|
229 |
-
228.0000 4.3433
|
230 |
-
229.0000 4.3433
|
231 |
-
230.0000 4.3433
|
232 |
-
231.0000 4.3433
|
233 |
-
232.0000 4.3433
|
234 |
-
233.0000 4.3433
|
235 |
-
234.0000 4.3433
|
236 |
-
235.0000 4.3433
|
237 |
-
236.0000 4.3661
|
238 |
-
237.0000 4.3661
|
239 |
-
238.0000 4.3661
|
240 |
-
239.0000 4.3661
|
241 |
-
240.0000 4.3661
|
242 |
-
241.0000 4.3661
|
243 |
-
242.0000 4.3661
|
244 |
-
243.0000 4.3661
|
245 |
-
244.0000 4.3661
|
246 |
-
245.0000 4.3661
|
247 |
-
246.0000 4.3956
|
248 |
-
247.0000 4.3956
|
249 |
-
248.0000 4.3956
|
250 |
-
249.0000 4.3956
|
251 |
-
250.0000 4.3956
|
252 |
-
251.0000 4.3956
|
253 |
-
252.0000 4.3956
|
254 |
-
253.0000 4.3956
|
255 |
-
254.0000 4.3956
|
256 |
-
255.0000 4.3956
|
257 |
-
256.0000 4.4230
|
258 |
-
257.0000 4.4230
|
259 |
-
258.0000 4.4230
|
260 |
-
259.0000 4.4230
|
261 |
-
260.0000 4.4230
|
262 |
-
261.0000 4.4230
|
263 |
-
262.0000 4.4230
|
264 |
-
263.0000 4.4230
|
265 |
-
264.0000 4.4230
|
266 |
-
265.0000 4.4230
|
267 |
-
266.0000 4.4492
|
268 |
-
267.0000 4.4492
|
269 |
-
268.0000 4.4492
|
270 |
-
269.0000 4.4492
|
271 |
-
270.0000 4.4492
|
272 |
-
271.0000 4.4492
|
273 |
-
272.0000 4.4492
|
274 |
-
273.0000 4.4492
|
275 |
-
274.0000 4.4492
|
276 |
-
275.0000 4.4492
|
277 |
-
276.0000 4.4802
|
278 |
-
277.0000 4.4802
|
279 |
-
278.0000 4.4802
|
280 |
-
279.0000 4.4802
|
281 |
-
280.0000 4.4802
|
282 |
-
281.0000 4.4802
|
283 |
-
282.0000 4.4802
|
284 |
-
283.0000 4.4802
|
285 |
-
284.0000 4.4802
|
286 |
-
285.0000 4.4802
|
287 |
-
286.0000 4.5075
|
288 |
-
287.0000 4.5075
|
289 |
-
288.0000 4.5075
|
290 |
-
289.0000 4.5075
|
291 |
-
290.0000 4.5075
|
292 |
-
291.0000 4.5075
|
293 |
-
292.0000 4.5075
|
294 |
-
293.0000 4.5075
|
295 |
-
294.0000 4.5075
|
296 |
-
295.0000 4.5075
|
297 |
-
296.0000 4.5413
|
298 |
-
297.0000 4.5413
|
299 |
-
298.0000 4.5413
|
300 |
-
299.0000 4.5413
|
301 |
-
300.0000 4.5413
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/01_CSEM_Eastmed.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/02_CSEM_Europe.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/03_US-upper-mantle.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/04_Alaska.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/05_EUCrust1.0.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/06_CSEM_South_Atlantic.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/07_CSEM_North_Atlantic.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/08_CSEM_Japan.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/09_CSEM_lberia.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/10_CSEM_Australasia.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/11_USTCLitho1.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/12_LITHO1.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/13_Central_and_Western_US-Shen2013.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-deep/1s-100s-Base/14_Continental-China-Shen2016.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-real/CSRM/01_CSRM_Real.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-real/LongBeanch/01_longBeach.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-real/LongBeanch/Backup/02_syn_longBeach.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/00_OpenSWI-shallow-example.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_1_OpenFWI-FlatVel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_2_OpenFWI-FlatFault-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_3_OpenFWI-CurveVel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_4_OpenFWI-CurveFault-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_5_OpenFWI-Style-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/vp_demo.txt
DELETED
@@ -1,70 +0,0 @@
|
|
1 |
-
0.0000 1.5870
|
2 |
-
0.0400 1.5870
|
3 |
-
0.0800 1.5870
|
4 |
-
0.1200 1.5870
|
5 |
-
0.1600 1.5870
|
6 |
-
0.2000 1.5870
|
7 |
-
0.2400 1.5870
|
8 |
-
0.2800 1.5870
|
9 |
-
0.3200 2.1660
|
10 |
-
0.3600 2.1660
|
11 |
-
0.4000 2.1660
|
12 |
-
0.4400 2.1660
|
13 |
-
0.4800 2.1660
|
14 |
-
0.5200 2.1660
|
15 |
-
0.5600 2.1660
|
16 |
-
0.6000 2.1660
|
17 |
-
0.6400 2.1660
|
18 |
-
0.6800 2.7230
|
19 |
-
0.7200 2.7230
|
20 |
-
0.7600 2.7230
|
21 |
-
0.8000 2.7230
|
22 |
-
0.8400 2.7230
|
23 |
-
0.8800 2.7230
|
24 |
-
0.9200 2.7230
|
25 |
-
0.9600 2.7230
|
26 |
-
1.0000 2.7230
|
27 |
-
1.0400 2.7230
|
28 |
-
1.0800 2.7230
|
29 |
-
1.1200 2.9820
|
30 |
-
1.1600 2.9820
|
31 |
-
1.2000 2.9820
|
32 |
-
1.2400 2.9820
|
33 |
-
1.2800 2.9820
|
34 |
-
1.3200 2.9820
|
35 |
-
1.3600 2.9820
|
36 |
-
1.4000 2.9820
|
37 |
-
1.4400 2.9820
|
38 |
-
1.4800 3.0040
|
39 |
-
1.5200 3.0040
|
40 |
-
1.5600 3.0040
|
41 |
-
1.6000 3.0040
|
42 |
-
1.6400 3.0040
|
43 |
-
1.6800 3.0040
|
44 |
-
1.7200 3.0040
|
45 |
-
1.7600 3.0040
|
46 |
-
1.8000 3.0040
|
47 |
-
1.8400 3.0180
|
48 |
-
1.8800 3.0180
|
49 |
-
1.9200 3.0180
|
50 |
-
1.9600 3.0180
|
51 |
-
2.0000 3.0180
|
52 |
-
2.0400 3.0180
|
53 |
-
2.0800 3.0180
|
54 |
-
2.1200 3.0180
|
55 |
-
2.1600 3.0180
|
56 |
-
2.2000 3.0180
|
57 |
-
2.2400 3.0180
|
58 |
-
2.2800 3.7610
|
59 |
-
2.3200 3.7610
|
60 |
-
2.3600 3.7610
|
61 |
-
2.4000 3.7610
|
62 |
-
2.4400 3.7610
|
63 |
-
2.4800 3.7610
|
64 |
-
2.5200 3.7610
|
65 |
-
2.5600 3.7610
|
66 |
-
2.6000 3.7610
|
67 |
-
2.6400 4.4770
|
68 |
-
2.6800 4.4770
|
69 |
-
2.7200 4.4770
|
70 |
-
2.7600 4.4770
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_1_OpenFWI-FlatVel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_2_OpenFWI-FlatFault-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_3_OpenFWI-CurveVel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_4_OpenFWI-CurveFault-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/01_5_OpenFWI-Style-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
SWIDP/README.md
DELETED
@@ -1,180 +0,0 @@
|
|
1 |
-
## [SWIDP: Integrated Workflow for Dataset Construction](../SWIDP/)
|
2 |
-
|
3 |
-
SWIDP provides a fully modular pipeline for constructing large-scale surface-wave dispersion curve datasets:
|
4 |
-
|
5 |
-
1. **Collect and standardize geological models**
|
6 |
-
Aggregate 2D/3D geological–geomorphological models from public databases and literature, and unify data format through cleaning, parameter conversion, and normalization.
|
7 |
-
|
8 |
-
2. **Build 1D velocity models**
|
9 |
-
Extract representative 1D shear-wave velocity profiles, de-duplicate, optimize thin layers, interpolate to uniform thickness, and complete missing parameters (e.g., \(v_p\), density).
|
10 |
-
|
11 |
-
3. **Augment for geological diversity**
|
12 |
-
Apply perturbation-based and generative-model-based enhancements to improve geological diversity and boundary complexity coverage.
|
13 |
-
|
14 |
-
4. **Forward modeling of dispersion curves**
|
15 |
-
Efficiently compute large-scale surface-wave dispersion curves (using an optimized **Disba**-based solver with parallelization) across diverse period ranges.
|
16 |
-
|
17 |
-
```mermaid
|
18 |
-
flowchart LR
|
19 |
-
A[Collect & Standardize Geological Models] --> B[Build 1D Velocity Models]
|
20 |
-
B --> C[Augment for Geological Diversity]
|
21 |
-
C --> D[Forward Modeling of Dispersion Curves]
|
22 |
-
```
|
23 |
-
|
24 |
-
---
|
25 |
-
|
26 |
-
### Example 1: Building the **OpenSWI-shallow** Dataset
|
27 |
-
|
28 |
-
```python
|
29 |
-
import numpy as np
|
30 |
-
import sys
|
31 |
-
sys.path.append("OpenSWI/Datasets/OpenSWI/")
|
32 |
-
from SWIDP.process_1d_shallow import augment_workflow
|
33 |
-
from SWIDP.dispersion import (
|
34 |
-
generate_mixed_samples, calculate_dispersion,
|
35 |
-
transform_vp_to_vs, transform_vs_to_vel_model
|
36 |
-
)
|
37 |
-
from p_tqdm import p_map
|
38 |
-
|
39 |
-
# Step 1: Load 1D velocity model n x (depth, vp)
|
40 |
-
depth_vp = np.loadtxt(
|
41 |
-
"./OpenSWI/Datasets/OpenSWI/Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/vp_demo.txt"
|
42 |
-
)
|
43 |
-
depth = depth_vp[:, 0]
|
44 |
-
vp = depth_vp[:, 1]
|
45 |
-
|
46 |
-
# Step 2: Convert vp to vs
|
47 |
-
vs = transform_vp_to_vs(vp)
|
48 |
-
|
49 |
-
# Step 3: Augment vs models
|
50 |
-
augment_nums = 100
|
51 |
-
vs_augmented = augment_workflow(
|
52 |
-
vs, depth,
|
53 |
-
perturb_num=augment_nums,
|
54 |
-
vs_perturbation=0.05, # relative ratio
|
55 |
-
thickness_perturbation=0.1, # relative ratio
|
56 |
-
vel_threshold=0.05, # km/s
|
57 |
-
thickness_threshold=0.01, # km
|
58 |
-
min_layers_num=3,
|
59 |
-
smooth_vel=False,
|
60 |
-
smooth_nodes=10
|
61 |
-
)
|
62 |
-
|
63 |
-
# Step 4: Build full velocity models (depth, vp, vs, rho)
|
64 |
-
vel_model_augmented = p_map(
|
65 |
-
transform_vs_to_vel_model,
|
66 |
-
list(vs_augmented),
|
67 |
-
[depth] * len(vs_augmented)
|
68 |
-
)
|
69 |
-
|
70 |
-
# Step 5: Generate dispersion curves [t, phase velocity, group velocity]
|
71 |
-
t = generate_mixed_samples(
|
72 |
-
num_samples=100, start=0.2, end=10,
|
73 |
-
uniform_num=50, log_num=20, random_num=30
|
74 |
-
)
|
75 |
-
disp = p_map(
|
76 |
-
calculate_dispersion,
|
77 |
-
vel_model_augmented,
|
78 |
-
[t] * len(vel_model_augmented)
|
79 |
-
)
|
80 |
-
```
|
81 |
-
|
82 |
-
Details of this example can be found at
|
83 |
-
|
84 |
-
| Dataset Type | Description | Link |
|
85 |
-
|-----------------|-------------------------------------|-------------------------------------------------------------------------------------------|
|
86 |
-
| **OpenSWI-shallow Example** | Example notebook for the OpenSWI dataset | [OpenSWI-shallow-example.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/00_OpenSWI-shallow-example.ipynb) |
|
87 |
-
| **Flat** | Flat velocity model construction | [OpenFWI-FlatVel-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_1_OpenFWI-FlatVel-A.ipynb) |
|
88 |
-
| **Flat-Fault** | Flat velocity model with fault | [OpenFWI-FlatFault-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_2_OpenFWI-FlatFault-A.ipynb) |
|
89 |
-
| **Fold** | Fold velocity model construction | [OpenFWI-CurveVel-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_3_OpenFWI-CurveVel-A.ipynb) |
|
90 |
-
| **Fold-Fault** | Fold velocity model with fault | [OpenFWI-CurveFault-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_4_OpenFWI-CurveFault-A.ipynb) |
|
91 |
-
| **Field** | Field data modeling | [OpenFWI-Style-A.ipynb](../Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/01_5_OpenFWI-Style-A.ipynb) |
|
92 |
-
|
93 |
-
|
94 |
-
---
|
95 |
-
|
96 |
-
### Example 2: Building the **OpenSWI-deep** Dataset
|
97 |
-
|
98 |
-
```python
|
99 |
-
import numpy as np
|
100 |
-
import sys
|
101 |
-
sys.path.append("../../../")
|
102 |
-
from SWIDP.process_1d_deep import *
|
103 |
-
from SWIDP.dispersion import generate_mixed_samples,calculate_dispersion,transform_vs_to_vel_model
|
104 |
-
from p_tqdm import p_map
|
105 |
-
|
106 |
-
# step1: get 1d velocity model (vp model or vs)
|
107 |
-
depth_vs = np.loadtxt("../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/vs_demo.txt")
|
108 |
-
depth = depth_vs[:,0]
|
109 |
-
vs = depth_vs[:,1]
|
110 |
-
|
111 |
-
# step2-1: remove the thin sandwidth layer
|
112 |
-
vs = combine_thin_sandwich(vs,
|
113 |
-
depth,
|
114 |
-
thickness_threshold=12, # km
|
115 |
-
uniform_thickness=1, # km (thickness_threshold/uniform_thickness) = max_check_layers
|
116 |
-
gradient_threshold=0.05, # km/s (gradient_threshold)
|
117 |
-
return_idx=False
|
118 |
-
)
|
119 |
-
|
120 |
-
# step2-2: smooth the vs model (selectable)
|
121 |
-
vs = smooth_vs_by_node_interp(vs,
|
122 |
-
depth,
|
123 |
-
n_nodes=20,
|
124 |
-
method="pchip"
|
125 |
-
)
|
126 |
-
|
127 |
-
# step3: find moho index
|
128 |
-
moho_idx = find_moho_depth(vs,
|
129 |
-
depth,
|
130 |
-
[5,90], # range of moho index
|
131 |
-
gradient_search=False,
|
132 |
-
gradient_threshold=0.01)
|
133 |
-
|
134 |
-
# step4: augment the vs model
|
135 |
-
perturb_nums = 100
|
136 |
-
vs_augmented = p_map(augment_crust_moho_mantle,
|
137 |
-
[vs]*perturb_nums,
|
138 |
-
list(depth.reshape(1,-1))*perturb_nums,
|
139 |
-
[moho_idx]*perturb_nums,
|
140 |
-
[[-0.1,0.1]]*perturb_nums, # relative ratio
|
141 |
-
[[3,8]]*perturb_nums, # nodes for crust
|
142 |
-
[[8,15]]*perturb_nums, # nodes for mantle
|
143 |
-
[3]*perturb_nums, # km
|
144 |
-
[2]*perturb_nums, # km
|
145 |
-
[False]*perturb_nums,
|
146 |
-
np.random.randint(0,1000000,perturb_nums)
|
147 |
-
)
|
148 |
-
|
149 |
-
# step5: transform the vs model to vp model
|
150 |
-
vel_models = p_map(transform_vs_to_vel_model,list(vs_augmented),[depth]*len(vs_augmented))
|
151 |
-
|
152 |
-
# step6: calculate the dispersion curve
|
153 |
-
t = generate_mixed_samples(num_samples=300,start=1,end=100,uniform_num=100,log_num=100,random_num=100)
|
154 |
-
t = np.ones((len(vel_models),len(t)))*t
|
155 |
-
disp_data = p_map(calculate_dispersion, vel_models, list(t))
|
156 |
-
disp_data = np.array(disp_data)
|
157 |
-
vel_models = np.array(vel_models)
|
158 |
-
|
159 |
-
```
|
160 |
-
Details of this example can be found at:
|
161 |
-
|
162 |
-
| Dataset Name | Reference | Link |
|
163 |
-
|----------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|
164 |
-
| OpenSWI-deep-example | - | [OpenSWI-deep-example.ipynb](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/00_OpenSWI-deep-example.ipynb) |
|
165 |
-
| LITHO1.0 | Pasyanos et al., 2014 | [LITHO1.0](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/12_LITHO1.ipynb) |
|
166 |
-
| USTClitho1.0 | Xin et al., 2018 | [USTClitho1.0](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/11_USTCLitho1.ipynb) |
|
167 |
-
| Central-and-Western US | Shen et al., 2013 | [Central-and-Western US](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/13_Central_and_Western_US_Shen2013.ipynb) |
|
168 |
-
| Continental China | Shen et al., 2016 | [Continental China](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/14_Continental_China_Shen2016.ipynb) |
|
169 |
-
| US Upper-Mantle | Xie et al., 2018 | [US Upper-Mantle](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/03_US-upper-mantle.ipynb) |
|
170 |
-
| EUCrust | Lu et al., 2018 | [EUCrust](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/05_EUCrust.ipynb) |
|
171 |
-
| Alaska | Berg et al., 2020 | [Alaska](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/04_Alaska.ipynb) |
|
172 |
-
| CSEM-Europe | Blom et al., 2020; Fichtner et al., 2018; Çubuk-Sabuncu et al., 2017 | [CSEM-Europe](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/02_CSEM_Europe.ipynb) |
|
173 |
-
| CSEM-Eastmed | Blom et al., 2020; Fichtner et al., 2018 | [CSEM-Eastmed](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/01_CSEM_Eastmed.ipynb) |
|
174 |
-
| CSEM-Iberian | Fichtner et al., 2018; Fichtner et al., 2015 | [CSEM-Iberian](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/09_CSEM_lberia.ipynb) |
|
175 |
-
| CSEM-South Atlantic | Fichtner et al., 2018; Colli et al., 2013 | [CSEM-South Atlantic](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/07_CSEM_North_Atlantic.ipynb) |
|
176 |
-
| CSEM-North Atlantic | Fichtner et al., 2018; Krischer et al., 2018 | [CSEM-North Atlantic](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/07_CSEM_North_Atlantic.ipynb) |
|
177 |
-
| CSEM-Japan | Fichtner et al., 2018; Simutė et al., 2016 | [CSEM-Japan](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/08_CSEM_Japan.ipynb) |
|
178 |
-
| CSEM-Australasia | Fichtner et al., 2018; Fichtner et al., 2010 | [CSEM-Australasia](../Datasets-Construction/OpenSWI-deep/1s-100s-Aug/10_CSEM_Australasia.ipynb) |
|
179 |
-
|
180 |
-
----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SWIDP/__init__.py
DELETED
File without changes
|
SWIDP/diffusion_aug_2d.py
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
from SWIDP.process_1d_shallow import combine_same_vs, perturb_vs_depth, smooth_vs_by_node_interp
|
3 |
-
from scipy.interpolate import interp1d
|
4 |
-
|
5 |
-
# -------------------------------------------------------
|
6 |
-
# extract the 1D profile from the 2D model
|
7 |
-
# -------------------------------------------------------
|
8 |
-
def extract_1d_profile(vs_model,station_idx=None,method="mean"):
|
9 |
-
"""extract the 1D profile from the 2D model
|
10 |
-
Args:
|
11 |
-
vs_model: 2D array [n_depth,n_x]
|
12 |
-
=> shear velocity model
|
13 |
-
method: str
|
14 |
-
=> method to extract the 1D profile
|
15 |
-
Returns:
|
16 |
-
vs_profile: 2D array [n_sta,n_depth]
|
17 |
-
=> shear velocity profile
|
18 |
-
"""
|
19 |
-
if method == "mean":
|
20 |
-
vs_profile = np.mean(vs_model,axis=1)
|
21 |
-
vs_profile = vs_profile.reshape(1,-1)
|
22 |
-
elif method == "st" and isinstance(station_idx,int): # single station
|
23 |
-
vs_profile = vs_model[:,station_idx]
|
24 |
-
vs_profile = vs_profile.reshape(1,-1)
|
25 |
-
elif method == "mt" and isinstance(station_idx,list):
|
26 |
-
vs_profile = vs_model[:,station_idx]
|
27 |
-
vs_profile = vs_profile.T
|
28 |
-
elif method == "random": # random station
|
29 |
-
vs_profile = vs_model[:,np.random.randint(0,vs_model.shape[1])]
|
30 |
-
vs_profile = vs_profile.reshape(1,-1)
|
31 |
-
elif method == "all": # all stations
|
32 |
-
vs_profile = vs_model
|
33 |
-
vs_profile = vs_profile.T
|
34 |
-
else:
|
35 |
-
raise ValueError(f"Invalid method: {method}")
|
36 |
-
return vs_profile
|
37 |
-
|
38 |
-
|
39 |
-
# -------------------------------------------------------
|
40 |
-
# normalize & denormalize the shear velocity
|
41 |
-
# -------------------------------------------------------
|
42 |
-
def max_min_normalize(vs):
|
43 |
-
"""Normalize shear velocity.
|
44 |
-
Args:
|
45 |
-
vs: 1D array
|
46 |
-
=> shear velocity (km/s)
|
47 |
-
Returns:
|
48 |
-
vs: 1D array
|
49 |
-
=> normalized shear velocity (0-1)
|
50 |
-
"""
|
51 |
-
vs = np.array(vs)
|
52 |
-
vs = (vs-np.min(vs))/(np.max(vs)-np.min(vs))
|
53 |
-
return vs
|
54 |
-
|
55 |
-
def max_min_denormalize(vs, vmin=0.2, vmax=3.2):
|
56 |
-
"""Denormalize shear velocity.
|
57 |
-
Args:
|
58 |
-
vs: 1D array
|
59 |
-
=> normalized shear velocity (0-1)
|
60 |
-
vmin: float,
|
61 |
-
=> minimum shear velocity (km/s)
|
62 |
-
vmax: float,
|
63 |
-
=> maximum shear velocity (km/s)
|
64 |
-
Returns:
|
65 |
-
vs: 1D array
|
66 |
-
=> shear velocity (km/s)
|
67 |
-
"""
|
68 |
-
vs = np.array(vs)
|
69 |
-
# make sure the vs is normalized
|
70 |
-
vs = max_min_normalize(vs)
|
71 |
-
|
72 |
-
# denormalize to [vmin,vmax]
|
73 |
-
vs = vs*(vmax-vmin)+vmin
|
74 |
-
return vs
|
75 |
-
|
76 |
-
# -------------------------------------------------------
|
77 |
-
# interpolate the shear velocity
|
78 |
-
# -------------------------------------------------------
|
79 |
-
def interpolate_vs(vs,depth,depth_interp,kind="previous"):
|
80 |
-
"""interpolate the shear velocity
|
81 |
-
Args:
|
82 |
-
vs: 1D array
|
83 |
-
=> shear velocity (km/s)
|
84 |
-
"""
|
85 |
-
# padding the last layer of depth and vs larger than depth_interp
|
86 |
-
eps = 0.01
|
87 |
-
if depth.max() < depth_interp.max():
|
88 |
-
vs = np.insert(vs,len(vs),vs[-1])
|
89 |
-
depth = np.insert(depth,len(depth),depth_interp[-1]+eps)
|
90 |
-
elif depth.min() > depth_interp.min():
|
91 |
-
vs = np.insert(vs,0,vs[0])
|
92 |
-
depth = np.insert(depth,0,depth[0]-eps)
|
93 |
-
|
94 |
-
# interpolate the shear velocity
|
95 |
-
f = interp1d(depth,vs,kind=kind)
|
96 |
-
vs_interp = f(depth_interp)
|
97 |
-
return vs_interp
|
98 |
-
|
99 |
-
# -------------------------------------------------------
|
100 |
-
# extract 1D profile and interpolation
|
101 |
-
# -------------------------------------------------------
|
102 |
-
|
103 |
-
def diffusion_extract_process(vs_model,
|
104 |
-
extract_station_idx=None,
|
105 |
-
extract_method="mean",
|
106 |
-
denorm_vmin_range=[0.2,0.5],
|
107 |
-
denorm_vmax_range=[2.5,3.5],
|
108 |
-
combine_vel_threshold=0.1,
|
109 |
-
interp_depth=None,
|
110 |
-
interp_kind="previous",
|
111 |
-
smooth_vel=False,
|
112 |
-
smooth_nodes=10,
|
113 |
-
smooth_kind="pchip",
|
114 |
-
):
|
115 |
-
"""diffusion extract process
|
116 |
-
Args:
|
117 |
-
vs_model: 2D array [n_depth,n_x]
|
118 |
-
=> shear velocity model
|
119 |
-
extract_station_idx: int,
|
120 |
-
=> station index
|
121 |
-
extract_method: str
|
122 |
-
=> method to extract the 1D profile
|
123 |
-
denorm_vmin: float
|
124 |
-
=> minimum shear velocity (km/s)
|
125 |
-
denorm_vmax: float
|
126 |
-
=> maximum shear velocity (km/s)
|
127 |
-
combine_vel_threshold: float
|
128 |
-
=> velocity threshold for combining the same vs
|
129 |
-
interp_depth: 1D array
|
130 |
-
=> target depth for interpolation
|
131 |
-
interp_kind: str
|
132 |
-
=> kind of interpolation
|
133 |
-
smooth_vel: bool
|
134 |
-
=> whether to smooth the vs
|
135 |
-
smooth_nodes: int
|
136 |
-
=> number of nodes for smoothing
|
137 |
-
smooth_kind: str
|
138 |
-
=> kind of smoothing
|
139 |
-
Returns:
|
140 |
-
vs_aug: 2D array [n_sta,n_depth]
|
141 |
-
=> extracted shear velocity
|
142 |
-
depth_aug: 2D array [n_sta,n_depth]
|
143 |
-
=> extracted depth
|
144 |
-
"""
|
145 |
-
# Step 1: extract the 1D profile
|
146 |
-
vs_profiles = extract_1d_profile(vs_model,extract_station_idx,extract_method)
|
147 |
-
depth = np.arange(vs_profiles.shape[-1])*0.04
|
148 |
-
|
149 |
-
if interp_depth is None:
|
150 |
-
interp_depth = depth
|
151 |
-
|
152 |
-
vs_aug,depth_aug = [],[]
|
153 |
-
|
154 |
-
for i in range(vs_profiles.shape[0]):
|
155 |
-
vs_profile = vs_profiles[i,:]
|
156 |
-
|
157 |
-
# Step 2: de-normalize the shear velocity
|
158 |
-
denorm_vmin = np.random.uniform(denorm_vmin_range[0],denorm_vmin_range[1])
|
159 |
-
denorm_vmax = np.random.uniform(denorm_vmax_range[0],denorm_vmax_range[1])
|
160 |
-
vs_denormed = max_min_denormalize(vs_profile,denorm_vmin,denorm_vmax)
|
161 |
-
|
162 |
-
# Step 3: combine the same vs
|
163 |
-
vs_combined,depth_combined = combine_same_vs(vs_denormed,depth,combine_vel_threshold)
|
164 |
-
|
165 |
-
# step 4: smooth the vs
|
166 |
-
if smooth_vel:
|
167 |
-
vs_smooth = smooth_vs_by_node_interp(vs_combined,depth_combined,n_nodes=smooth_nodes,method=smooth_kind)
|
168 |
-
else:
|
169 |
-
vs_smooth = vs_combined
|
170 |
-
|
171 |
-
# Step 5: interpolate the shear velocity
|
172 |
-
vs_interpolated = interpolate_vs(vs_smooth,depth_combined,interp_depth,interp_kind)
|
173 |
-
|
174 |
-
vs_aug.extend(vs_interpolated)
|
175 |
-
depth_aug.extend(interp_depth)
|
176 |
-
|
177 |
-
vs_aug = np.array(vs_aug).reshape(-1,len(interp_depth)) # [n_sta,n_depth]
|
178 |
-
depth_aug = np.array(depth_aug).reshape(-1,len(interp_depth)) # [n_sta,n_depth]
|
179 |
-
return vs_aug,depth_aug
|
180 |
-
|
181 |
-
# -------------------------------------------------------
|
182 |
-
# augmentation 1D profile
|
183 |
-
# -------------------------------------------------------
|
184 |
-
|
185 |
-
def diffusion_aug_extract_process(vs_model,
|
186 |
-
extract_station_idx=None,
|
187 |
-
extract_method="mean",
|
188 |
-
denorm_vmin_range=[0.2,0.5],
|
189 |
-
denorm_vmax_range=[2.5,3.5],
|
190 |
-
combine_vel_threshold=0.1,
|
191 |
-
interp_depth=np.arange(70)*0.04,
|
192 |
-
interp_kind="previous",
|
193 |
-
smooth_vel=False,
|
194 |
-
smooth_nodes=10,
|
195 |
-
smooth_kind="pchip",
|
196 |
-
aug_nums = 100,
|
197 |
-
aug_vs_probility=0.05,
|
198 |
-
aug_thickness_probility=0.1,
|
199 |
-
aug_vel_threshold=0.1,
|
200 |
-
smooth_aug_vel=False,
|
201 |
-
smooth_aug_nodes=10,
|
202 |
-
smooth_aug_kind="pchip",
|
203 |
-
):
|
204 |
-
"""diffusion augmentation extract process
|
205 |
-
Args:
|
206 |
-
vs_model: 2D array [n_depth,n_x]
|
207 |
-
=> shear velocity model
|
208 |
-
extract_station_idx: int,
|
209 |
-
=> station index
|
210 |
-
extract_method: str
|
211 |
-
=> method to extract the 1D profile
|
212 |
-
denorm_vmin: float
|
213 |
-
=> minimum shear velocity (km/s)
|
214 |
-
denorm_vmax: float
|
215 |
-
=> maximum shear velocity (km/s)
|
216 |
-
combine_vel_threshold: float
|
217 |
-
=> velocity threshold for combining the same vs
|
218 |
-
interp_depth: 1D array
|
219 |
-
=> target depth for interpolation
|
220 |
-
interp_kind: str
|
221 |
-
=> kind of interpolation
|
222 |
-
smooth_vel: bool
|
223 |
-
=> whether to smooth the vs
|
224 |
-
smooth_nodes: int
|
225 |
-
=> number of nodes for smoothing
|
226 |
-
smooth_kind: str
|
227 |
-
=> kind of smoothing
|
228 |
-
aug_nums: int
|
229 |
-
=> number of augmentation
|
230 |
-
aug_vs_probility: float
|
231 |
-
=> probability of vs perturbation
|
232 |
-
aug_thickness_probility: float
|
233 |
-
=> probability of thickness perturbation
|
234 |
-
aug_vel_threshold: float
|
235 |
-
=> velocity threshold for removing the thin layers
|
236 |
-
aug_min_layers_num: int
|
237 |
-
=> minimum number of layers
|
238 |
-
smooth_aug_vel: bool
|
239 |
-
=> whether to smooth the augmented vs
|
240 |
-
smooth_aug_nodes: int
|
241 |
-
=> number of nodes for smoothing the augmented vs
|
242 |
-
smooth_aug_kind: str
|
243 |
-
=> kind of smoothing the augmented vs
|
244 |
-
Returns:
|
245 |
-
vs_aug: 3D array [n_sta,n_aug,n_depth]
|
246 |
-
=> augmented shear velocity
|
247 |
-
depth_aug: 3D array [n_sta,n_aug,n_depth]
|
248 |
-
=> augmented depth
|
249 |
-
"""
|
250 |
-
# Step 1: extract the 1D profile
|
251 |
-
vs_profiles = extract_1d_profile(vs_model,extract_station_idx,extract_method)
|
252 |
-
depth = np.arange(vs_profiles.shape[-1])*0.04
|
253 |
-
|
254 |
-
vs_aug,depth_aug = [],[]
|
255 |
-
|
256 |
-
for i in range(vs_profiles.shape[0]):
|
257 |
-
vs_profile = vs_profiles[i,:]
|
258 |
-
|
259 |
-
# Step 2: de-normalize the shear velocity
|
260 |
-
denorm_vmin = np.random.uniform(denorm_vmin_range[0],denorm_vmin_range[1])
|
261 |
-
denorm_vmax = np.random.uniform(denorm_vmax_range[0],denorm_vmax_range[1])
|
262 |
-
vs_denormed = max_min_denormalize(vs_profile,denorm_vmin,denorm_vmax)
|
263 |
-
|
264 |
-
# Step 3: combine the same vs
|
265 |
-
vs_combined,depth_combined = combine_same_vs(vs_denormed,depth,combine_vel_threshold)
|
266 |
-
|
267 |
-
# step 4: smooth the vs
|
268 |
-
if smooth_vel:
|
269 |
-
vs_smooth = smooth_vs_by_node_interp(vs_combined,depth_combined,n_nodes=smooth_nodes,method=smooth_kind)
|
270 |
-
else:
|
271 |
-
vs_smooth = vs_combined
|
272 |
-
|
273 |
-
# Step 5: augmentation 1D profile
|
274 |
-
vs_aug_st,depth_aug_st = [],[]
|
275 |
-
for j in range(aug_nums):
|
276 |
-
if j == 0:
|
277 |
-
vs_aug_1d = vs_smooth
|
278 |
-
depth_aug_1d = depth_combined
|
279 |
-
else:
|
280 |
-
vs_aug_1d,depth_aug_1d = perturb_vs_depth(vs_smooth,depth_combined,
|
281 |
-
vs_perturbation=aug_vs_probility,
|
282 |
-
thickness_perturbation=aug_thickness_probility,
|
283 |
-
vel_threshold=aug_vel_threshold)
|
284 |
-
|
285 |
-
# Step 6: interpolate the shear velocity
|
286 |
-
vs_interpolated = interpolate_vs(vs_aug_1d,depth_aug_1d,interp_depth,interp_kind)
|
287 |
-
|
288 |
-
# step 7: smooth the augmented shear velocity
|
289 |
-
if smooth_aug_vel:
|
290 |
-
vs_interpolated = smooth_vs_by_node_interp(vs_interpolated,interp_depth,n_nodes=smooth_aug_nodes,method=smooth_aug_kind)
|
291 |
-
vs_aug_st.append(vs_interpolated)
|
292 |
-
depth_aug_st.append(interp_depth)
|
293 |
-
vs_aug.append(np.array(vs_aug_st))
|
294 |
-
depth_aug.append(np.array(depth_aug_st))
|
295 |
-
|
296 |
-
vs_aug = np.array(vs_aug) # [n_sta,n_aug,n_depth]
|
297 |
-
depth_aug = np.array(depth_aug) # [n_sta,n_aug,n_depth]
|
298 |
-
return vs_aug,depth_aug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SWIDP/dispersion.py
DELETED
@@ -1,367 +0,0 @@
|
|
1 |
-
"""This file is used to calculate the dispersion curve based on the given velocity model.
|
2 |
-
The original dispersion curve forward modeling procedure is based on the CPS330 software
|
3 |
-
https://www.eas.slu.edu/eqc/ComputerProgramsSeismology/index.html
|
4 |
-
The dispersion curve is calculated by the disba package:
|
5 |
-
https://github.com/keurfonluu/disba
|
6 |
-
The transform of velocity model is based on the Brocher (2005) model.
|
7 |
-
[1] T. M. Brocher, “Empirical relations between elastic wavespeeds and density in the earth’s crust,”
|
8 |
-
Bull. Seismol. Soc. Amer., vol. 95, no. 6, pp. 2081–2092, Dec. 2005, doi: 10.1785/0120050077.
|
9 |
-
"""
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
from disba import PhaseDispersion,GroupDispersion
|
13 |
-
from scipy.interpolate import interp1d
|
14 |
-
|
15 |
-
# -------------------------------------------------------
|
16 |
-
# calculate the dispersion curve
|
17 |
-
# -------------------------------------------------------
|
18 |
-
def calculate_dispersion(vel_model,t=None,dc=0.001):
|
19 |
-
"""calculate the dispersion curve
|
20 |
-
Args:
|
21 |
-
vel_model: 2D numpy array
|
22 |
-
=> the velocity model (depth, vp, vs, rho)
|
23 |
-
t: 1D numpy array
|
24 |
-
=> the periods (s)
|
25 |
-
dc: float
|
26 |
-
=> the sampling interval (km/s) for search the dispersion curve
|
27 |
-
Returns:
|
28 |
-
dispersion_curve: 2D numpy array
|
29 |
-
=> the dispersion curve (period, phase velocity, group velocity)
|
30 |
-
"""
|
31 |
-
# transform the depth to the thickness
|
32 |
-
depth, vp, vs, rho = vel_model.T
|
33 |
-
thickness = np.diff(depth)
|
34 |
-
thickness = np.append(thickness, thickness[-1])
|
35 |
-
vel_model = np.column_stack((thickness, vp, vs, rho))
|
36 |
-
vel_model = vel_model.astype(np.float64)
|
37 |
-
|
38 |
-
if t is None:
|
39 |
-
# Periods must be sorted starting with low periods
|
40 |
-
t = generate_mixed_samples(num_samples=100,start=0.2,end=10,uniform_num=50,log_num=20,random_num=30)
|
41 |
-
|
42 |
-
# Compute the 3 first Rayleigh- and Love- wave modal dispersion curves
|
43 |
-
try:
|
44 |
-
pd = PhaseDispersion(*vel_model.T, dc=dc)
|
45 |
-
gd = GroupDispersion(*vel_model.T, dc=dc)
|
46 |
-
phase_disp = [pd(t, mode=i, wave="rayleigh") for i in range(1)]
|
47 |
-
group_disp = [gd(t, mode=i, wave='rayleigh') for i in range(1)]
|
48 |
-
|
49 |
-
phase_period,phase_vel = phase_disp[0].period,phase_disp[0].velocity
|
50 |
-
group_period,group_vel = group_disp[0].period,group_disp[0].velocity
|
51 |
-
|
52 |
-
if len(phase_period) != len(t) or len(group_period) != len(t):
|
53 |
-
phase_period = np.zeros(len(t))
|
54 |
-
group_period = np.zeros(len(t))
|
55 |
-
phase_vel = np.zeros(len(t))
|
56 |
-
group_vel = np.zeros(len(t))
|
57 |
-
t = np.zeros(len(phase_vel))
|
58 |
-
except Exception as e:
|
59 |
-
# If any error occurs during computation, return arrays of zeros
|
60 |
-
phase_vel = np.zeros(len(t))
|
61 |
-
group_vel = np.zeros(len(t))
|
62 |
-
t = np.zeros(len(phase_vel))
|
63 |
-
return np.hstack((t.reshape(-1,1),phase_vel.reshape(-1,1),group_vel.reshape(-1,1)))
|
64 |
-
|
65 |
-
# -------------------------------------------------------
|
66 |
-
# generate the periods position
|
67 |
-
# -------------------------------------------------------
|
68 |
-
def generate_mixed_samples(num_samples, start=0.5, end=5, uniform_num=100, log_num=100, random_num=100):
|
69 |
-
"""generate periods position
|
70 |
-
Args:
|
71 |
-
num_samples: int
|
72 |
-
=> the number of periods
|
73 |
-
start: float
|
74 |
-
=> the start period (s)
|
75 |
-
end: float
|
76 |
-
=> the end period (s)
|
77 |
-
uniform_num: int
|
78 |
-
=> the number of uniform sampling points
|
79 |
-
log_num: int
|
80 |
-
=> the number of logarithmic sampling points
|
81 |
-
random_num: int
|
82 |
-
=> the number of random sampling points
|
83 |
-
Returns:
|
84 |
-
t_final_sorted: 1D numpy array
|
85 |
-
=> the sorted periods (s)
|
86 |
-
"""
|
87 |
-
# Uniform sampling
|
88 |
-
t_uniform = np.linspace(start, end, num=uniform_num)
|
89 |
-
# Logarithmic sampling
|
90 |
-
t_log = 1/np.logspace(np.log10(1/end), np.log10(1/start), num=log_num)
|
91 |
-
# Random sampling
|
92 |
-
t_random = np.random.uniform(start, end, size=random_num)
|
93 |
-
|
94 |
-
# Remove duplicates
|
95 |
-
t_uniform_unique = np.unique(t_uniform)
|
96 |
-
t_log_unique = np.unique(t_log)
|
97 |
-
t_random_unique = np.unique(t_random)
|
98 |
-
|
99 |
-
# Combine all unique sampling points
|
100 |
-
t_combined = np.concatenate((t_uniform_unique, t_log_unique, t_random_unique))
|
101 |
-
t_combined_unique = np.unique(t_combined)
|
102 |
-
|
103 |
-
# Adjust final number of sampling points
|
104 |
-
if len(t_combined_unique) > num_samples:
|
105 |
-
t_final = np.random.choice(t_combined_unique, size=num_samples, replace=False)
|
106 |
-
elif len(t_combined_unique) < num_samples:
|
107 |
-
extra_samples = np.random.uniform(start, end, size=num_samples - len(t_combined_unique))
|
108 |
-
t_final = np.concatenate((t_combined_unique, extra_samples))
|
109 |
-
t_final = np.unique(t_final)
|
110 |
-
else:
|
111 |
-
t_final = t_combined_unique
|
112 |
-
|
113 |
-
# Sort
|
114 |
-
t_final_sorted = np.sort(t_final)
|
115 |
-
|
116 |
-
return t_final_sorted
|
117 |
-
|
118 |
-
# -------------------------------------------------------
|
119 |
-
# transform the velocity model (Brocher, 2005)
|
120 |
-
# -------------------------------------------------------
|
121 |
-
def transform_vp_to_vs(vp):
|
122 |
-
"""transform the P-wave velocity to S-wave velocity (Brocher, 2005)
|
123 |
-
Args:
|
124 |
-
vp: 1D/2D numpy array
|
125 |
-
=> P-wave velocity (km/s)
|
126 |
-
Returns:
|
127 |
-
vs: 1D/2D numpy array
|
128 |
-
=> S-wave velocity (km/s)
|
129 |
-
"""
|
130 |
-
vs = 0.7858 - 1.2344*vp + 0.7949*vp**2 - 0.1238*vp**3 + 0.0064*vp**4
|
131 |
-
return vs
|
132 |
-
|
133 |
-
def transform_vs_to_vp(vs):
|
134 |
-
"""transform the S-wave velocity to P-wave velocity (Brocher, 2005)
|
135 |
-
Args:
|
136 |
-
vs: 1D/2D numpy array
|
137 |
-
=> S-wave velocity (km/s)
|
138 |
-
Returns:
|
139 |
-
vp: 1D/2D numpy array
|
140 |
-
=> P-wave velocity (km/s)
|
141 |
-
"""
|
142 |
-
vp = 0.9409 + 2.0947*vs - 0.8206*vs**2+ 0.2683*vs**3 - 0.0251*vs**4
|
143 |
-
return vp
|
144 |
-
|
145 |
-
def transform_vp_to_rho(vp):
|
146 |
-
"""transform the P-wave velocity to density (Brocher, 2005)
|
147 |
-
Args:
|
148 |
-
vp: 1D/2D numpy array
|
149 |
-
=> P-wave velocity (km/s)
|
150 |
-
Returns:
|
151 |
-
rho: 1D/2D numpy array
|
152 |
-
=> density (g/cm^3)
|
153 |
-
"""
|
154 |
-
rho = 1.6612*vp - 0.4721*vp**2 + 0.0671*vp**3 - 0.0043*vp**4 + 0.000106*vp**5
|
155 |
-
return rho
|
156 |
-
|
157 |
-
def transform_vs_to_vel_model(vs,depth=None):
|
158 |
-
"""transform the S-wave velocity to velocity model (Brocher, 2005)
|
159 |
-
Args:
|
160 |
-
vs: 1D numpy array
|
161 |
-
=> S-wave velocity (km/s)
|
162 |
-
depth: 1D numpy array
|
163 |
-
=> depth (km)
|
164 |
-
Returns:
|
165 |
-
vel_model: 2D numpy array
|
166 |
-
=> the velocity model (depth, vp, vs, rho)
|
167 |
-
"""
|
168 |
-
if depth is None:
|
169 |
-
depth = np.arange(0, vs.shape[-1])*0.04
|
170 |
-
vp = transform_vs_to_vp(vs)
|
171 |
-
|
172 |
-
# depth > 120 km, the P-wave velocity is equal to the S-wave velocity * 1.79
|
173 |
-
mask = depth>120
|
174 |
-
vp[mask] = vs[mask]*1.79
|
175 |
-
rho = transform_vp_to_rho(vp)
|
176 |
-
vel_model = np.column_stack((depth, vp, vs, rho))
|
177 |
-
return vel_model
|
178 |
-
|
179 |
-
def transform_vp_to_vel_model(vp,depth=None):
|
180 |
-
"""get the velocity model (Brocher, 2005)
|
181 |
-
Args:
|
182 |
-
vp: 1D numpy array
|
183 |
-
=> P-wave velocity (km/s)
|
184 |
-
depth: 1D numpy array
|
185 |
-
=> depth (km)
|
186 |
-
Returns:
|
187 |
-
vel_model: 2D numpy array
|
188 |
-
=> the velocity model (depth, vp, vs, rho)
|
189 |
-
"""
|
190 |
-
if depth is None:
|
191 |
-
depth = np.arange(0, vp.shape[-1])*0.04
|
192 |
-
vs = transform_vp_to_vs(vp)
|
193 |
-
rho = transform_vp_to_rho(vp)
|
194 |
-
vel_model = np.column_stack((depth, vp, vs, rho))
|
195 |
-
return vel_model
|
196 |
-
|
197 |
-
# -------------------------------------------------------
|
198 |
-
# interpolate the velocity model
|
199 |
-
# -------------------------------------------------------
|
200 |
-
def interpolate_vel_model(vel_model,depth_new,interp_method="nearest"):
|
201 |
-
"""interpolate the velocity model
|
202 |
-
Args:
|
203 |
-
vel_model: 2D numpy array
|
204 |
-
=> the velocity model (depth, vp, vs, rho)
|
205 |
-
depth_new: 1D numpy array
|
206 |
-
=> the new depth (km)
|
207 |
-
interp_method: str
|
208 |
-
=> the interpolation method
|
209 |
-
Returns:
|
210 |
-
vel_model: 2D numpy array
|
211 |
-
=> the velocity model (depth, vp, vs, rho)
|
212 |
-
"""
|
213 |
-
depth,vp,vs,rho = vel_model.T
|
214 |
-
f_vp = interp1d(depth,vp,kind=interp_method,fill_value=vp[-1],bounds_error=False)
|
215 |
-
f_vs = interp1d(depth,vs,kind=interp_method,fill_value=vs[-1],bounds_error=False)
|
216 |
-
f_rho = interp1d(depth,rho,kind=interp_method,fill_value=rho[-1],bounds_error=False)
|
217 |
-
vp_new = f_vp(depth_new)
|
218 |
-
vs_new = f_vs(depth_new)
|
219 |
-
rho_new = f_rho(depth_new)
|
220 |
-
vel_model_new = np.column_stack((depth_new,vp_new,vs_new,rho_new))
|
221 |
-
return vel_model_new
|
222 |
-
|
223 |
-
# -------------------------------------------------------
|
224 |
-
# generate the initial model based on empirical formula
|
225 |
-
# -------------------------------------------------------
|
226 |
-
def gen_init_model(t,cg_obs,thick,area=False):
|
227 |
-
"""
|
228 |
-
generate the initial model based on empirical formula
|
229 |
-
developed by Thomas M.Brocher (2005).
|
230 |
-
---------------------
|
231 |
-
Input Parameters:
|
232 |
-
t : 1D numpy array
|
233 |
-
=> period of observaton dispersion points
|
234 |
-
cg_obs: 1D numpy array
|
235 |
-
=> phase velocity of observation dispersion points
|
236 |
-
thick : 1D numpy array
|
237 |
-
=> thickness of each layer
|
238 |
-
Output: the initialize model
|
239 |
-
thick : 1D numpy array
|
240 |
-
=> thickness
|
241 |
-
vs : 1D numpy array
|
242 |
-
=> the shear wave velocity
|
243 |
-
vp : 1D numpy array
|
244 |
-
=> the compress wave velocity
|
245 |
-
rho: 1D numpy array
|
246 |
-
=> the density
|
247 |
-
--------------------
|
248 |
-
Output parameters:
|
249 |
-
model:Dict
|
250 |
-
=> the generated model
|
251 |
-
"""
|
252 |
-
wavelength = t*cg_obs
|
253 |
-
nlayer = len(thick)
|
254 |
-
lambda2L = 0.65 # the depth faction 0.63L
|
255 |
-
beta = 0.92 # the poisson's ratio
|
256 |
-
eqv_lambda = lambda2L*wavelength
|
257 |
-
lay_model = np.zeros((nlayer,2))
|
258 |
-
lay_model[:,0] = thick
|
259 |
-
for i in range(nlayer-1):
|
260 |
-
if i == 0:
|
261 |
-
up_bound = 0
|
262 |
-
else:
|
263 |
-
up_bound = up_bound + lay_model[i-1,0] # the top-layer's depth
|
264 |
-
low_bound = up_bound + lay_model[i,0] # the botton-layer's depth
|
265 |
-
# vs for every layer
|
266 |
-
lambda_idx = np.argwhere((eqv_lambda>up_bound) & (eqv_lambda<low_bound))
|
267 |
-
if len(lambda_idx)>0:
|
268 |
-
lay_model[i,1] = np.max(cg_obs[lambda_idx])/beta # phase velocity -> vs
|
269 |
-
else:
|
270 |
-
lambda_idx = np.argmin(np.abs(eqv_lambda - low_bound))
|
271 |
-
lay_model[i,1] = cg_obs[lambda_idx]/beta
|
272 |
-
# set the last layer
|
273 |
-
lay_model[nlayer-1,0] = 0
|
274 |
-
lay_model[nlayer-1,1] = np.max(cg_obs)*1.1
|
275 |
-
thick = lay_model[:,0]
|
276 |
-
vs = lay_model[:,1]
|
277 |
-
vp = transform_vs_to_vp(vs)
|
278 |
-
depth = np.cumsum(thick)
|
279 |
-
|
280 |
-
mask = depth>120
|
281 |
-
vp[mask] = vs[mask]*1.79
|
282 |
-
rho = transform_vp_to_rho(vp)
|
283 |
-
|
284 |
-
model = {
|
285 |
-
"depth":depth,
|
286 |
-
"vp":vp,
|
287 |
-
"vs":vs,
|
288 |
-
"rho":rho
|
289 |
-
}
|
290 |
-
if area:
|
291 |
-
return np.column_stack((depth,vp,vs,rho))
|
292 |
-
else:
|
293 |
-
return model
|
294 |
-
|
295 |
-
# -------------------------------------------------------
|
296 |
-
# generate the velocity model from the S-wave velocity
|
297 |
-
# -------------------------------------------------------
|
298 |
-
def gen_model_from_vs(depth,vs,area=False,Brocher=True):
|
299 |
-
"""
|
300 |
-
generate the initial model based on empirical formula
|
301 |
-
developed by Thomas M.Brocher (2005).
|
302 |
-
---------------------
|
303 |
-
Input Parameters:
|
304 |
-
thick : Array(1D)
|
305 |
-
=> the thickness of layer
|
306 |
-
vs : Array(1D)
|
307 |
-
=> the shear wave velocity
|
308 |
-
area : boolen
|
309 |
-
=> the output format
|
310 |
-
--------------------
|
311 |
-
Output parameters:
|
312 |
-
model:Dict
|
313 |
-
the generated model
|
314 |
-
"""
|
315 |
-
depth = np.array(depth)
|
316 |
-
thickness = np.diff(depth)
|
317 |
-
thickness = np.insert(thickness,-1,thickness[-1])
|
318 |
-
vs = np.array(vs)
|
319 |
-
if Brocher:
|
320 |
-
vp = transform_vs_to_vp(vs)
|
321 |
-
else:
|
322 |
-
vp = 1.79*vs
|
323 |
-
mask = depth>120
|
324 |
-
vp[mask] = vs[mask]*1.79
|
325 |
-
rho = transform_vp_to_rho(vp)
|
326 |
-
model = {
|
327 |
-
"depth":depth,
|
328 |
-
"vp":vp,
|
329 |
-
"vs":vs,
|
330 |
-
"rho":rho
|
331 |
-
}
|
332 |
-
if area:
|
333 |
-
return np.column_stack((depth, vp, vs, rho))
|
334 |
-
else:
|
335 |
-
return model
|
336 |
-
|
337 |
-
# -------------------------------------------------------
|
338 |
-
# smooth the data
|
339 |
-
# -------------------------------------------------------
|
340 |
-
def smooth_data(y, window_size=7):
|
341 |
-
"""
|
342 |
-
Smooth the input data using a moving average filter, with padding to reduce edge effects.
|
343 |
-
|
344 |
-
Parameters:
|
345 |
-
y (array-like): The input data to be smoothed.
|
346 |
-
window_size (int): Size of the moving average window (default is 7).
|
347 |
-
|
348 |
-
Returns:
|
349 |
-
y_smooth (array-like): Smoothed data.
|
350 |
-
"""
|
351 |
-
|
352 |
-
# Save the first data point to preserve it after smoothing
|
353 |
-
first_point = y[0]
|
354 |
-
|
355 |
-
# Create a moving average window (a window of ones normalized by the window size)
|
356 |
-
window = np.ones(window_size) / window_size
|
357 |
-
|
358 |
-
# Pad the input data using 'reflect' mode to minimize edge effects during convolution
|
359 |
-
y_padded = np.pad(y, (window_size // 2, window_size // 2), mode='reflect')
|
360 |
-
|
361 |
-
# Apply the convolution between the padded data and the smoothing window
|
362 |
-
y_smooth = np.convolve(y_padded, window, mode='valid')
|
363 |
-
|
364 |
-
# Replace the first point of the smoothed data with the original first point
|
365 |
-
y_smooth[0] = first_point
|
366 |
-
|
367 |
-
return y_smooth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SWIDP/download_2d_3d_model.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
# Notice
|
2 |
-
# We provide the following download links for the datasets used in this work.
|
3 |
-
# However, we strongly encourage users to properly credit the original studies when using these datasets in any research or derivative work.
|
4 |
-
# Please also carefully read the official documentation of each dataset on their corresponding websites to fully understand the data description, quality control, and usage constraints.
|
5 |
-
|
6 |
-
# Datasets links
|
7 |
-
|
8 |
-
# 1. SWI-shallow from OpenFWI
|
9 |
-
# https://openfwi-lanl.github.io/docs/data.html
|
10 |
-
# Flat: https://drive.google.com/drive/folders/1NIdjiYhjWSV9NHn7ZEFYTpJxzvzxqYRb?usp=sharing
|
11 |
-
# Fold: https://drive.google.com/drive/folders/1NGXnVG0gUFHfDcUvJxfozCgiI4WwquVk?usp=sharing
|
12 |
-
# Flat-Fault: https://drive.google.com/drive/folders/1jOB6R_zewuFj5wZam7nDP7GixQnbnRLR?usp=sharing
|
13 |
-
# Fold-Fault: https://drive.google.com/drive/folders/1vqUHJ-iRwp3ozL-e4HhKGpdO0e7NQZE1?usp=sharing
|
14 |
-
# Field: https://drive.google.com/drive/folders/1CQceUL5ITTHV-PRqbIzkyZwCDdUk0XkU?usp=sharing
|
15 |
-
|
16 |
-
# 2. OpenSWI-deep from 14 global and regional 3D velocity models
|
17 |
-
# LITHO1.0: https://igppweb.ucsd.edu/~gabi/litho1.0.html
|
18 |
-
# USTClitho1.0: http://chinageorefmodel.org/wp-content/uploads/china-models-individual/USTClitho1.0.zip
|
19 |
-
# Central-and-Western-US: http://ciei.colorado.edu/Models/US_4/WCUS_Shen_2012.zip
|
20 |
-
# Continental-China: http://ciei.colorado.edu/Models/China_Shen_2015/China_2015_Vs_v1.0.tar
|
21 |
-
# US-Upper-Mantle: http://ds.iris.edu/ds/products/emc-us-upper-mantle-vsxiechuyang2018/
|
22 |
-
# Alaska: https://ds.iris.edu/ds/products/emc-alaskajointinversion_rfvphhv-1berg2020/
|
23 |
-
# LSP-Eucrust1.0: https://ds.iris.edu/ds/products/emc-lsp_eucrust10/
|
24 |
-
# CSRM-Eastern Mediterranean: https://ds.iris.edu/spud/earthmodel/18027082
|
25 |
-
# CSEM-Europe: https://ds.iris.edu/spud/earthmodel/18027090
|
26 |
-
# CSEM-South-Atlantic: http://ds.iris.edu/ds/products/emc-csem_south_atlantic
|
27 |
-
# CSEM-North-Atlantic: http://ds.iris.edu/ds/products/emc-csem_north_atlantic
|
28 |
-
# CSEM-japan: http://ds.iris.edu/ds/products/emc-csem_japan
|
29 |
-
# CSEM-iberia: http://ds.iris.edu/ds/products/emc-csem_iberia
|
30 |
-
# CSEM-Australasia: http://ds.iris.edu/ds/products/emc-csem_australasia
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|