liufeng
commited on
Commit
·
584b440
1
Parent(s):
106533a
update: datasets links
Browse files- .gitignore +2 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_1_OpenFWI-FlatVel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_2_OpenFWI-FlatFault-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_3_OpenFWI-CurveVel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_4_OpenFWI-CurveFault-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_5_OpenFWI-Stylel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/readme.md +0 -5
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/00_DataDistributionStatistic.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_0_OpenFWI-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_1_OpenFWI-FlatVel-A.ipynb +0 -282
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_2_OpenFWI-FlatFault-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_3_OpenFWI-CurveVel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_4_OpenFWI-CurveFault-A.ipynb +0 -310
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_5_OpenFWI-Stylel-A.ipynb +0 -0
- Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/02_1_OpenFWI-FlatVel-B.ipynb +0 -0
- SWIDP/__pycache__/__init__.cpython-310.pyc +0 -0
- SWIDP/__pycache__/diffusion_aug_2d.cpython-310.pyc +0 -0
- SWIDP/__pycache__/dispersion.cpython-310.pyc +0 -0
- SWIDP/__pycache__/process_1d_deep.cpython-310.pyc +0 -0
- SWIDP/__pycache__/process_1d_shallow.cpython-310.pyc +0 -0
- SWIDP/__pycache__/velocity_aug_1d.cpython-310.pyc +0 -0
- SWIDP/__pycache__/velocity_aug_1d_deep.cpython-310.pyc +0 -0
.gitignore
CHANGED
@@ -1,4 +1,6 @@
|
|
|
|
1 |
backup/
|
|
|
2 |
Article-Figures/
|
3 |
python/
|
4 |
Figures/
|
|
|
1 |
+
__pycache__/
|
2 |
backup/
|
3 |
+
# Backup/
|
4 |
Article-Figures/
|
5 |
python/
|
6 |
Figures/
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_1_OpenFWI-FlatVel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_2_OpenFWI-FlatFault-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_3_OpenFWI-CurveVel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_4_OpenFWI-CurveFault-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/01_5_OpenFWI-Stylel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s-varyingThickness/readme.md
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
|
2 |
-
v1: t range: 0.5-5s, 100 samples
|
3 |
-
t = generate_mixed_samples(num_samples=100,start=0.5,end=5,uniform_num=30,log_num=30,random_num=40)
|
4 |
-
v2: t range: 0.01-5s, 120 samples
|
5 |
-
t = generate_mixed_samples(num_samples=120,start=0.01,end=5,uniform_num=40,log_num=40,random_num=40)
|
|
|
|
|
|
|
|
|
|
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/00_DataDistributionStatistic.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_0_OpenFWI-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_1_OpenFWI-FlatVel-A.ipynb
DELETED
@@ -1,282 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"## Imshow 1 of the subsets"
|
8 |
-
]
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"cell_type": "code",
|
12 |
-
"execution_count": null,
|
13 |
-
"metadata": {},
|
14 |
-
"outputs": [],
|
15 |
-
"source": [
|
16 |
-
"import os\n",
|
17 |
-
"import numpy as np\n",
|
18 |
-
"import matplotlib.pyplot as plt\n",
|
19 |
-
"\n",
|
20 |
-
"\n",
|
21 |
-
"data_base_path = \"/home/bingxing2/ailab/group/ai4earth/liufeng/OpenFWI/FlatVel_A/model\"\n",
|
22 |
-
"\n",
|
23 |
-
"models_list = os.listdir(data_base_path)\n",
|
24 |
-
"\n",
|
25 |
-
"models_list = sorted(models_list, key=lambda x: int(x.split(\".\")[0].replace(\"model\", \"\")))\n",
|
26 |
-
"\n",
|
27 |
-
"models_path_list = []\n",
|
28 |
-
"for model_name in models_list:\n",
|
29 |
-
" model_path = os.path.join(data_base_path, model_name)\n",
|
30 |
-
" models_path_list.append(model_path)\n",
|
31 |
-
"\n",
|
32 |
-
"\n",
|
33 |
-
"vel_model_subsets0 = np.load(models_path_list[0])\n",
|
34 |
-
"vel_model_subsets0 = vel_model_subsets0.squeeze()\n",
|
35 |
-
"nrows = 10\n",
|
36 |
-
"ncols = 10\n",
|
37 |
-
"fig,axs = plt.subplots(nrows,ncols,figsize=(10,10))\n",
|
38 |
-
"for i in range(nrows):\n",
|
39 |
-
" for j in range(ncols):\n",
|
40 |
-
" axs[i,j].imshow(vel_model_subsets0[i*ncols+j],cmap=\"jet\")\n",
|
41 |
-
" axs[i,j].set_xticks([])\n",
|
42 |
-
" axs[i,j].set_yticks([])\n",
|
43 |
-
"plt.subplots_adjust(wspace=0.05,hspace=0.05)\n",
|
44 |
-
"# plt.savefig(\"Datasets/JupyterNotebook/Figures/FlatVel_A_2D.png\",bbox_inches='tight',dpi=300)\n",
|
45 |
-
"plt.show()\n"
|
46 |
-
]
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"cell_type": "markdown",
|
50 |
-
"metadata": {},
|
51 |
-
"source": [
|
52 |
-
"## Datasets Preparing"
|
53 |
-
]
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"cell_type": "code",
|
57 |
-
"execution_count": 2,
|
58 |
-
"metadata": {},
|
59 |
-
"outputs": [],
|
60 |
-
"source": [
|
61 |
-
"import numpy as np\n",
|
62 |
-
"from DispFormer.dispersion import *\n",
|
63 |
-
"from p_tqdm import p_map"
|
64 |
-
]
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"cell_type": "code",
|
68 |
-
"execution_count": null,
|
69 |
-
"metadata": {},
|
70 |
-
"outputs": [],
|
71 |
-
"source": [
|
72 |
-
"vel_model_subset = np.load(models_path_list[0]).squeeze()\n",
|
73 |
-
"vel_models0 = transform_vp_to_vel_model(vel_model_subset[100,:,10]/1000)\n",
|
74 |
-
"vel_models1 = transform_vs_to_vel_model(vel_models0[:,2],depth=vel_models0[:,0])\n",
|
75 |
-
"disp0 = calculate_dispersion(vel_models0)\n",
|
76 |
-
"disp1 = calculate_dispersion(vel_models1)\n",
|
77 |
-
"depth = vel_models0[:,0]\n",
|
78 |
-
"\n",
|
79 |
-
"plt.figure(figsize=(10,5))\n",
|
80 |
-
"plt.subplot(121)\n",
|
81 |
-
"plt.step(vel_models0[:,2],depth)\n",
|
82 |
-
"plt.step(vel_models1[:,2],depth)\n",
|
83 |
-
"plt.gca().invert_yaxis()\n",
|
84 |
-
"\n",
|
85 |
-
"\n",
|
86 |
-
"plt.subplot(122)\n",
|
87 |
-
"plt.scatter(disp0[:,0],disp0[:,1])\n",
|
88 |
-
"plt.scatter(disp1[:,0],disp1[:,1])\n",
|
89 |
-
"plt.show()"
|
90 |
-
]
|
91 |
-
},
|
92 |
-
{
|
93 |
-
"cell_type": "code",
|
94 |
-
"execution_count": null,
|
95 |
-
"metadata": {},
|
96 |
-
"outputs": [],
|
97 |
-
"source": [
|
98 |
-
"save_base_path = \"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/Datasets/OpenSWI/Datasets/OpenSWI-shallow/0.2-10s-Aug/\"\n",
|
99 |
-
"\n",
|
100 |
-
"# Initialize empty lists to store data\n",
|
101 |
-
"disp_data_all = []\n",
|
102 |
-
"vel_models_all = []\n",
|
103 |
-
"\n",
|
104 |
-
"try:\n",
|
105 |
-
" # Process each model file\n",
|
106 |
-
" for path in models_path_list:\n",
|
107 |
-
" # Load and preprocess velocity model\n",
|
108 |
-
" vel_model_subset = np.load(path).squeeze()\n",
|
109 |
-
" \n",
|
110 |
-
" # Convert velocity from m/s to km/s and transform to velocity model\n",
|
111 |
-
" vel_models = p_map(transform_vp_to_vel_model, vel_model_subset[:,:,10]/1000)\n",
|
112 |
-
" vel_models = np.array(vel_models)\n",
|
113 |
-
" vs_models = list(vel_models[:,:,2])\n",
|
114 |
-
" vel_models = p_map(transform_vs_to_vel_model,vs_models)\n",
|
115 |
-
"\n",
|
116 |
-
" # Calculate dispersion curves\n",
|
117 |
-
" disp_data = p_map(calculate_dispersion, vel_models)\n",
|
118 |
-
" disp_data = np.array(disp_data)\n",
|
119 |
-
" \n",
|
120 |
-
" # Store results\n",
|
121 |
-
" disp_data_all.append(disp_data)\n",
|
122 |
-
" vel_models_all.append(vel_models)\n",
|
123 |
-
"\n",
|
124 |
-
" # Convert lists to numpy arrays and reshape\n",
|
125 |
-
" disp_data_all = np.array(disp_data_all).reshape(-1, *np.array(disp_data_all).shape[2:])\n",
|
126 |
-
" vel_models_all = np.array(vel_models_all).reshape(-1, *np.array(vel_models_all).shape[2:])\n",
|
127 |
-
" \n",
|
128 |
-
" # Filter out zero dispersion curves and corresponding velocity models\n",
|
129 |
-
" valid_indices = ~np.all(disp_data_all == 0, axis=(1,2))\n",
|
130 |
-
" disp_data_all = disp_data_all[valid_indices]\n",
|
131 |
-
" vel_models_all = vel_models_all[valid_indices]\n",
|
132 |
-
"\n",
|
133 |
-
" # Create output directory if it doesn't exist\n",
|
134 |
-
" os.makedirs(save_base_path, exist_ok=True)\n",
|
135 |
-
" \n",
|
136 |
-
" # Save processed data as compressed npz files\n",
|
137 |
-
" np.savez_compressed(os.path.join(save_base_path, \"FlatVelA_model.npz\"),\n",
|
138 |
-
" data=vel_models_all.astype(np.float32))\n",
|
139 |
-
" np.savez_compressed(os.path.join(save_base_path, \"FlatVelA_disp.npz\"),\n",
|
140 |
-
" data=disp_data_all.astype(np.float32))\n",
|
141 |
-
" \n",
|
142 |
-
"except Exception as e:\n",
|
143 |
-
" print(f\"An error occurred during processing: {str(e)}\")"
|
144 |
-
]
|
145 |
-
},
|
146 |
-
{
|
147 |
-
"cell_type": "markdown",
|
148 |
-
"metadata": {},
|
149 |
-
"source": [
|
150 |
-
"## Datasets Imshow\n"
|
151 |
-
]
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"cell_type": "code",
|
155 |
-
"execution_count": null,
|
156 |
-
"metadata": {},
|
157 |
-
"outputs": [],
|
158 |
-
"source": [
|
159 |
-
"import matplotlib.pyplot as plt\n",
|
160 |
-
"def plot_vel_disp(vel_model, disp_data):\n",
|
161 |
-
" \"\"\"Plot velocity model and dispersion curves\n",
|
162 |
-
" \n",
|
163 |
-
" Args:\n",
|
164 |
-
" vel_model: numpy array with columns [thickness, vp, vs, density]\n",
|
165 |
-
" disp_data: numpy array with columns [period, phase_vel, group_vel]\n",
|
166 |
-
" \"\"\"\n",
|
167 |
-
" fig, axs = plt.subplots(1,2,figsize=(10,6))\n",
|
168 |
-
" \n",
|
169 |
-
" depth = vel_model[:,0]\n",
|
170 |
-
" \n",
|
171 |
-
" # Left subplot - Velocity model\n",
|
172 |
-
" axs[0].step(vel_model[:,1], depth, label='P-wave velocity (km/s)', linewidth=2)\n",
|
173 |
-
" axs[0].step(vel_model[:,2], depth, label='S-wave velocity (km/s)', linewidth=2) \n",
|
174 |
-
" axs[0].step(vel_model[:,3], depth, label='Density (g/cm³)', linewidth=2)\n",
|
175 |
-
" axs[0].invert_yaxis()\n",
|
176 |
-
" axs[0].set_xlabel('Velocity (km/s) / Density (g/cm³)')\n",
|
177 |
-
" axs[0].set_ylabel('Depth (m)')\n",
|
178 |
-
" axs[0].set_title('Velocity Model')\n",
|
179 |
-
" axs[0].grid(True, linestyle='--', alpha=0.7)\n",
|
180 |
-
" axs[0].legend()\n",
|
181 |
-
"\n",
|
182 |
-
" # Right subplot - Dispersion curves\n",
|
183 |
-
" axs[1].scatter(disp_data[:,0], disp_data[:,1], label='Phase velocity', s=50)\n",
|
184 |
-
" axs[1].scatter(disp_data[:,0], disp_data[:,2], label='Group velocity', s=50)\n",
|
185 |
-
" axs[1].set_xlabel('Period (s)')\n",
|
186 |
-
" axs[1].set_ylabel('Velocity (km/s)')\n",
|
187 |
-
" axs[1].set_title('Dispersion Curves')\n",
|
188 |
-
" axs[1].grid(True, linestyle='--', alpha=0.7)\n",
|
189 |
-
" axs[1].legend()\n",
|
190 |
-
"\n",
|
191 |
-
" plt.tight_layout()\n",
|
192 |
-
" plt.show()\n",
|
193 |
-
" \n",
|
194 |
-
"# Test the function\n",
|
195 |
-
"idx = 1100\n",
|
196 |
-
"plot_vel_disp(vel_models_all[idx], disp_data_all[idx])"
|
197 |
-
]
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"cell_type": "code",
|
201 |
-
"execution_count": null,
|
202 |
-
"metadata": {},
|
203 |
-
"outputs": [],
|
204 |
-
"source": [
|
205 |
-
"# Create subplots for Vp, Vs and density\n",
|
206 |
-
"fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12,5))\n",
|
207 |
-
"\n",
|
208 |
-
"# Get depth array from first model\n",
|
209 |
-
"depth = vel_models_all[0,:,0]\n",
|
210 |
-
"\n",
|
211 |
-
"# Plot Vp models with alpha blending\n",
|
212 |
-
"ax1.step(vel_models_all[:,:,1].T, depth, color='r', alpha=0.01)\n",
|
213 |
-
"ax1.set_title('P-wave Velocity Models')\n",
|
214 |
-
"ax1.set_xlabel('Velocity (km/s)')\n",
|
215 |
-
"ax1.set_ylabel('Depth (m)')\n",
|
216 |
-
"ax1.invert_yaxis()\n",
|
217 |
-
"ax1.grid(True)\n",
|
218 |
-
"\n",
|
219 |
-
"# Plot Vs models\n",
|
220 |
-
"ax2.step(vel_models_all[:,:,2].T, depth, color='b', alpha=0.01)\n",
|
221 |
-
"ax2.set_title('P-wave Velocity Models')\n",
|
222 |
-
"ax2.set_xlabel('Velocity (km/s)')\n",
|
223 |
-
"ax2.set_ylabel('Depth (m)')\n",
|
224 |
-
"ax2.invert_yaxis()\n",
|
225 |
-
"ax2.grid(True)\n",
|
226 |
-
"\n",
|
227 |
-
"# Plot density models\n",
|
228 |
-
"ax3.step(vel_models_all[:,:,3].T, depth, color='gray', alpha=0.01)\n",
|
229 |
-
"ax3.set_title('P-wave Velocity Models')\n",
|
230 |
-
"ax3.set_xlabel('Velocity (km/s)')\n",
|
231 |
-
"ax3.set_ylabel('Depth (m)')\n",
|
232 |
-
"ax3.invert_yaxis()\n",
|
233 |
-
"ax3.grid(True)\n",
|
234 |
-
"\n",
|
235 |
-
"plt.tight_layout()\n",
|
236 |
-
"plt.show()"
|
237 |
-
]
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"cell_type": "code",
|
241 |
-
"execution_count": null,
|
242 |
-
"metadata": {},
|
243 |
-
"outputs": [],
|
244 |
-
"source": [
|
245 |
-
"import numpy as np\n",
|
246 |
-
"\n",
|
247 |
-
"vel_models_all = np.load(\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/Datasets/OpenSWI/Datasets/OpenSWI-shallow/0.2-10s-Aug/FlatVelA_model.npz\")[\"data\"]\n",
|
248 |
-
"disp_data_all = np.load(\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/Datasets/OpenSWI/Datasets/OpenSWI-shallow/0.2-10s-Aug/FlatVelA_disp.npz\")[\"data\"]\n",
|
249 |
-
"\n",
|
250 |
-
"vel_models_all.shape,disp_data_all.shape"
|
251 |
-
]
|
252 |
-
},
|
253 |
-
{
|
254 |
-
"cell_type": "code",
|
255 |
-
"execution_count": null,
|
256 |
-
"metadata": {},
|
257 |
-
"outputs": [],
|
258 |
-
"source": []
|
259 |
-
}
|
260 |
-
],
|
261 |
-
"metadata": {
|
262 |
-
"kernelspec": {
|
263 |
-
"display_name": "ADinversion",
|
264 |
-
"language": "python",
|
265 |
-
"name": "python3"
|
266 |
-
},
|
267 |
-
"language_info": {
|
268 |
-
"codemirror_mode": {
|
269 |
-
"name": "ipython",
|
270 |
-
"version": 3
|
271 |
-
},
|
272 |
-
"file_extension": ".py",
|
273 |
-
"mimetype": "text/x-python",
|
274 |
-
"name": "python",
|
275 |
-
"nbconvert_exporter": "python",
|
276 |
-
"pygments_lexer": "ipython3",
|
277 |
-
"version": "3.10.0"
|
278 |
-
}
|
279 |
-
},
|
280 |
-
"nbformat": 4,
|
281 |
-
"nbformat_minor": 2
|
282 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_2_OpenFWI-FlatFault-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_3_OpenFWI-CurveVel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_4_OpenFWI-CurveFault-A.ipynb
DELETED
@@ -1,310 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"## Imshow 1 of the subsets"
|
8 |
-
]
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"cell_type": "code",
|
12 |
-
"execution_count": null,
|
13 |
-
"metadata": {},
|
14 |
-
"outputs": [],
|
15 |
-
"source": [
|
16 |
-
"import os\n",
|
17 |
-
"import numpy as np\n",
|
18 |
-
"import matplotlib.pyplot as plt\n",
|
19 |
-
"\n",
|
20 |
-
"\n",
|
21 |
-
"data_base_path = \"/home/bingxing2/ailab/group/ai4earth/liufeng/OpenFWI/CurveFault_A/model\"\n",
|
22 |
-
"\n",
|
23 |
-
"models_list = os.listdir(data_base_path)\n",
|
24 |
-
"\n",
|
25 |
-
"# models_list = sorted(models_list, key=lambda x: int(x.split(\".\")[0].replace(\"model\", \"\")))\n",
|
26 |
-
"\n",
|
27 |
-
"models_path_list = []\n",
|
28 |
-
"for model_name in models_list:\n",
|
29 |
-
" model_path = os.path.join(data_base_path, model_name)\n",
|
30 |
-
" models_path_list.append(model_path)\n",
|
31 |
-
"\n",
|
32 |
-
"\n",
|
33 |
-
"vel_model_subsets0 = np.load(models_path_list[0])\n",
|
34 |
-
"vel_model_subsets0 = vel_model_subsets0.squeeze()\n",
|
35 |
-
"nrows = 10\n",
|
36 |
-
"ncols = 10\n",
|
37 |
-
"fig,axs = plt.subplots(nrows,ncols,figsize=(10,10))\n",
|
38 |
-
"for i in range(nrows):\n",
|
39 |
-
" for j in range(ncols):\n",
|
40 |
-
" axs[i,j].imshow(vel_model_subsets0[i*ncols+j],cmap=\"jet\")\n",
|
41 |
-
" axs[i,j].set_xticks([])\n",
|
42 |
-
" axs[i,j].set_yticks([])\n",
|
43 |
-
"plt.subplots_adjust(wspace=0.05,hspace=0.05)\n",
|
44 |
-
"# plt.savefig(\"Datasets/JupyterNotebook/Figures/CurveFault_A_2D.png\",bbox_inches='tight',dpi=300)\n",
|
45 |
-
"plt.show()\n"
|
46 |
-
]
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"cell_type": "markdown",
|
50 |
-
"metadata": {},
|
51 |
-
"source": [
|
52 |
-
"## Datasets Preparing"
|
53 |
-
]
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"cell_type": "code",
|
57 |
-
"execution_count": 2,
|
58 |
-
"metadata": {},
|
59 |
-
"outputs": [],
|
60 |
-
"source": [
|
61 |
-
"import numpy as np\n",
|
62 |
-
"from DispFormer.dispersion import *\n",
|
63 |
-
"from p_tqdm import p_map"
|
64 |
-
]
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"cell_type": "code",
|
68 |
-
"execution_count": null,
|
69 |
-
"metadata": {},
|
70 |
-
"outputs": [],
|
71 |
-
"source": [
|
72 |
-
"vel_model_subset = np.load(models_path_list[0]).squeeze()\n",
|
73 |
-
"vel_models0 = transform_vp_to_vel_model(vel_model_subset[80,:,20]/1000)\n",
|
74 |
-
"vel_models1 = transform_vs_to_vel_model(vel_models0[:,2],depth=vel_models0[:,0])\n",
|
75 |
-
"disp0 = calculate_dispersion(vel_models0)\n",
|
76 |
-
"disp1 = calculate_dispersion(vel_models1)\n",
|
77 |
-
"depth = vel_models0[:,0]\n",
|
78 |
-
"\n",
|
79 |
-
"plt.figure(figsize=(10,5))\n",
|
80 |
-
"plt.subplot(121)\n",
|
81 |
-
"plt.step(vel_models0[:,2],depth)\n",
|
82 |
-
"plt.step(vel_models1[:,2],depth)\n",
|
83 |
-
"plt.gca().invert_yaxis()\n",
|
84 |
-
"\n",
|
85 |
-
"\n",
|
86 |
-
"plt.subplot(122)\n",
|
87 |
-
"plt.scatter(disp0[:,0],disp0[:,1])\n",
|
88 |
-
"plt.scatter(disp1[:,0],disp1[:,1])\n",
|
89 |
-
"plt.show()\n",
|
90 |
-
"\n",
|
91 |
-
"vel_models0.dtype"
|
92 |
-
]
|
93 |
-
},
|
94 |
-
{
|
95 |
-
"cell_type": "code",
|
96 |
-
"execution_count": null,
|
97 |
-
"metadata": {},
|
98 |
-
"outputs": [],
|
99 |
-
"source": [
|
100 |
-
"vel_model_subset = np.load(models_path_list[0]).squeeze()\n",
|
101 |
-
"\n",
|
102 |
-
"model_idx = 10\n",
|
103 |
-
"\n",
|
104 |
-
"plt.figure()\n",
|
105 |
-
"plt.subplot(121)\n",
|
106 |
-
"plt.imshow(vel_model_subset[model_idx])\n",
|
107 |
-
"for i in range(0,70,2):\n",
|
108 |
-
" plt.axvline(x=i)\n",
|
109 |
-
"\n",
|
110 |
-
"plt.subplot(122)\n",
|
111 |
-
"depth = np.arange(70)*0.04\n",
|
112 |
-
"for i in range(0,70,2):\n",
|
113 |
-
" plt.step(vel_model_subset[model_idx,:,i],depth)\n",
|
114 |
-
"plt.gca().invert_yaxis()\n",
|
115 |
-
"plt.show()"
|
116 |
-
]
|
117 |
-
},
|
118 |
-
{
|
119 |
-
"cell_type": "code",
|
120 |
-
"execution_count": null,
|
121 |
-
"metadata": {},
|
122 |
-
"outputs": [],
|
123 |
-
"source": [
|
124 |
-
"save_base_path = \"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/Datasets/OpenSWI/Datasets/OpenSWI-shallow/0.2-10s-Aug/\"\n",
|
125 |
-
"\n",
|
126 |
-
"# Initialize empty lists to store data\n",
|
127 |
-
"disp_data_all = []\n",
|
128 |
-
"vel_models_all = []\n",
|
129 |
-
"\n",
|
130 |
-
"try:\n",
|
131 |
-
" # Process each model file\n",
|
132 |
-
" for path in models_path_list:\n",
|
133 |
-
" # Load and preprocess velocity model\n",
|
134 |
-
" vel_model_subset = np.load(path).squeeze()\n",
|
135 |
-
" \n",
|
136 |
-
" # Convert velocity from m/s to km/s and transform to velocity model\n",
|
137 |
-
" vel_model_subset = np.swapaxes(vel_model_subset, 1, 2)\n",
|
138 |
-
" vel_model_subset = vel_model_subset.reshape(-1, vel_model_subset.shape[-1])[::7]\n",
|
139 |
-
" vel_models = p_map(transform_vp_to_vel_model, vel_model_subset/1000)\n",
|
140 |
-
" vel_models = np.array(vel_models)\n",
|
141 |
-
" vs_models = list(vel_models[:,:,2])\n",
|
142 |
-
" vel_models = p_map(transform_vs_to_vel_model,vs_models)\n",
|
143 |
-
" \n",
|
144 |
-
" # Calculate dispersion curves\n",
|
145 |
-
" disp_data = p_map(calculate_dispersion, vel_models)\n",
|
146 |
-
" disp_data = np.array(disp_data)\n",
|
147 |
-
" \n",
|
148 |
-
" # Store results\n",
|
149 |
-
" disp_data_all.append(disp_data)\n",
|
150 |
-
" vel_models_all.append(vel_models)\n",
|
151 |
-
"\n",
|
152 |
-
" # Convert lists to numpy arrays and reshape\n",
|
153 |
-
" disp_data_all = np.array(disp_data_all).reshape(-1, *np.array(disp_data_all).shape[2:])\n",
|
154 |
-
" vel_models_all = np.array(vel_models_all).reshape(-1, *np.array(vel_models_all).shape[2:])\n",
|
155 |
-
" \n",
|
156 |
-
" # Filter out zero dispersion curves and corresponding velocity models\n",
|
157 |
-
" valid_indices = ~np.all(disp_data_all == 0, axis=(1,2))\n",
|
158 |
-
" disp_data_all = disp_data_all[valid_indices]\n",
|
159 |
-
" vel_models_all = vel_models_all[valid_indices]\n",
|
160 |
-
"\n",
|
161 |
-
" # Create output directory if it doesn't exist\n",
|
162 |
-
" os.makedirs(save_base_path, exist_ok=True)\n",
|
163 |
-
" \n",
|
164 |
-
" # Save processed data as compressed npz files\n",
|
165 |
-
" np.savez_compressed(os.path.join(save_base_path, \"CurveFaultA_model.npz\"),\n",
|
166 |
-
" data=vel_models_all.astype(np.float32))\n",
|
167 |
-
" np.savez_compressed(os.path.join(save_base_path, \"CurveFaultA_disp.npz\"),\n",
|
168 |
-
" data=disp_data_all.astype(np.float32))\n",
|
169 |
-
" \n",
|
170 |
-
"except Exception as e:\n",
|
171 |
-
" print(f\"An error occurred during processing: {str(e)}\")"
|
172 |
-
]
|
173 |
-
},
|
174 |
-
{
|
175 |
-
"cell_type": "markdown",
|
176 |
-
"metadata": {},
|
177 |
-
"source": [
|
178 |
-
"## Datasets Imshow\n"
|
179 |
-
]
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"cell_type": "code",
|
183 |
-
"execution_count": null,
|
184 |
-
"metadata": {},
|
185 |
-
"outputs": [],
|
186 |
-
"source": [
|
187 |
-
"import numpy as np\n",
|
188 |
-
"\n",
|
189 |
-
"vel_models_all = np.load(\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/Datasets/OpenSWI/Datasets/OpenSWI-shallow/0.2-10s-Aug/CurveFaultA_model.npz\")[\"data\"]\n",
|
190 |
-
"disp_data_all = np.load(\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/Datasets/OpenSWI/Datasets/OpenSWI-shallow/0.2-10s-Aug/CurveFaultA_disp.npz\")[\"data\"]\n",
|
191 |
-
"\n",
|
192 |
-
"vel_models_all.shape,disp_data_all.shape"
|
193 |
-
]
|
194 |
-
},
|
195 |
-
{
|
196 |
-
"cell_type": "code",
|
197 |
-
"execution_count": null,
|
198 |
-
"metadata": {},
|
199 |
-
"outputs": [],
|
200 |
-
"source": [
|
201 |
-
"import matplotlib.pyplot as plt\n",
|
202 |
-
"def plot_vel_disp(vel_model, disp_data):\n",
|
203 |
-
" \"\"\"Plot velocity model and dispersion curves\n",
|
204 |
-
" \n",
|
205 |
-
" Args:\n",
|
206 |
-
" vel_model: numpy array with columns [thickness, vp, vs, density]\n",
|
207 |
-
" disp_data: numpy array with columns [period, phase_vel, group_vel]\n",
|
208 |
-
" \"\"\"\n",
|
209 |
-
" fig, axs = plt.subplots(1,2,figsize=(10,6))\n",
|
210 |
-
" \n",
|
211 |
-
" depth = vel_model[:,0]\n",
|
212 |
-
" \n",
|
213 |
-
" # Left subplot - Velocity model\n",
|
214 |
-
" axs[0].step(vel_model[:,1], depth, label='P-wave velocity (km/s)', linewidth=2)\n",
|
215 |
-
" axs[0].step(vel_model[:,2], depth, label='S-wave velocity (km/s)', linewidth=2) \n",
|
216 |
-
" axs[0].step(vel_model[:,3], depth, label='Density (g/cm³)', linewidth=2)\n",
|
217 |
-
" axs[0].invert_yaxis()\n",
|
218 |
-
" axs[0].set_xlabel('Velocity (km/s) / Density (g/cm³)')\n",
|
219 |
-
" axs[0].set_ylabel('Depth (m)')\n",
|
220 |
-
" axs[0].set_title('Velocity Model')\n",
|
221 |
-
" axs[0].grid(True, linestyle='--', alpha=0.7)\n",
|
222 |
-
" axs[0].legend()\n",
|
223 |
-
"\n",
|
224 |
-
" # Right subplot - Dispersion curves\n",
|
225 |
-
" axs[1].scatter(disp_data[:,0], disp_data[:,1], label='Phase velocity', s=50)\n",
|
226 |
-
" axs[1].scatter(disp_data[:,0], disp_data[:,2], label='Group velocity', s=50)\n",
|
227 |
-
" axs[1].set_xlabel('Period (s)')\n",
|
228 |
-
" axs[1].set_ylabel('Velocity (km/s)')\n",
|
229 |
-
" axs[1].set_title('Dispersion Curves')\n",
|
230 |
-
" axs[1].grid(True, linestyle='--', alpha=0.7)\n",
|
231 |
-
" axs[1].legend()\n",
|
232 |
-
"\n",
|
233 |
-
" plt.tight_layout()\n",
|
234 |
-
" plt.show()\n",
|
235 |
-
" \n",
|
236 |
-
"# Test the function\n",
|
237 |
-
"idx = 120001\n",
|
238 |
-
"plot_vel_disp(vel_models_all[idx], disp_data_all[idx])"
|
239 |
-
]
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"cell_type": "code",
|
243 |
-
"execution_count": null,
|
244 |
-
"metadata": {},
|
245 |
-
"outputs": [],
|
246 |
-
"source": [
|
247 |
-
"# Create subplots for Vp, Vs and density\n",
|
248 |
-
"fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12,5))\n",
|
249 |
-
"\n",
|
250 |
-
"# Get depth array from first model\n",
|
251 |
-
"depth = vel_models_all[0,:,0]\n",
|
252 |
-
"\n",
|
253 |
-
"# Plot Vp models with alpha blending\n",
|
254 |
-
"ax1.step(vel_models_all[::100,:,1].T, depth, color='r', alpha=0.01)\n",
|
255 |
-
"ax1.set_title('P-wave Velocity Models')\n",
|
256 |
-
"ax1.set_xlabel('Velocity (km/s)')\n",
|
257 |
-
"ax1.set_ylabel('Depth (m)')\n",
|
258 |
-
"ax1.invert_yaxis()\n",
|
259 |
-
"ax1.grid(True)\n",
|
260 |
-
"\n",
|
261 |
-
"# Plot Vs models\n",
|
262 |
-
"ax2.step(vel_models_all[::100,:,2].T, depth, color='b', alpha=0.01)\n",
|
263 |
-
"ax2.set_title('S-wave Velocity Models')\n",
|
264 |
-
"ax2.set_xlabel('Velocity (km/s)')\n",
|
265 |
-
"ax2.set_ylabel('Depth (m)')\n",
|
266 |
-
"ax2.invert_yaxis()\n",
|
267 |
-
"ax2.grid(True)\n",
|
268 |
-
"\n",
|
269 |
-
"# Plot density models\n",
|
270 |
-
"ax3.step(vel_models_all[::100,:,3].T, depth, color='gray', alpha=0.01)\n",
|
271 |
-
"ax3.set_title('Density Models')\n",
|
272 |
-
"ax3.set_xlabel('Density (g/cm³)')\n",
|
273 |
-
"ax3.set_ylabel('Depth (m)')\n",
|
274 |
-
"ax3.invert_yaxis()\n",
|
275 |
-
"ax3.grid(True)\n",
|
276 |
-
"\n",
|
277 |
-
"plt.tight_layout()\n",
|
278 |
-
"plt.show()"
|
279 |
-
]
|
280 |
-
},
|
281 |
-
{
|
282 |
-
"cell_type": "code",
|
283 |
-
"execution_count": null,
|
284 |
-
"metadata": {},
|
285 |
-
"outputs": [],
|
286 |
-
"source": []
|
287 |
-
}
|
288 |
-
],
|
289 |
-
"metadata": {
|
290 |
-
"kernelspec": {
|
291 |
-
"display_name": "ADinversion",
|
292 |
-
"language": "python",
|
293 |
-
"name": "python3"
|
294 |
-
},
|
295 |
-
"language_info": {
|
296 |
-
"codemirror_mode": {
|
297 |
-
"name": "ipython",
|
298 |
-
"version": 3
|
299 |
-
},
|
300 |
-
"file_extension": ".py",
|
301 |
-
"mimetype": "text/x-python",
|
302 |
-
"name": "python",
|
303 |
-
"nbconvert_exporter": "python",
|
304 |
-
"pygments_lexer": "ipython3",
|
305 |
-
"version": "3.10.0"
|
306 |
-
}
|
307 |
-
},
|
308 |
-
"nbformat": 4,
|
309 |
-
"nbformat_minor": 2
|
310 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/01_5_OpenFWI-Stylel-A.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Datasets-Construction/OpenSWI-shallow/Backup/0.5-5s/02_1_OpenFWI-FlatVel-B.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
SWIDP/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (218 Bytes)
|
|
SWIDP/__pycache__/diffusion_aug_2d.cpython-310.pyc
DELETED
Binary file (7.41 kB)
|
|
SWIDP/__pycache__/dispersion.cpython-310.pyc
DELETED
Binary file (10.3 kB)
|
|
SWIDP/__pycache__/process_1d_deep.cpython-310.pyc
DELETED
Binary file (10 kB)
|
|
SWIDP/__pycache__/process_1d_shallow.cpython-310.pyc
DELETED
Binary file (6.31 kB)
|
|
SWIDP/__pycache__/velocity_aug_1d.cpython-310.pyc
DELETED
Binary file (8.5 kB)
|
|
SWIDP/__pycache__/velocity_aug_1d_deep.cpython-310.pyc
DELETED
Binary file (6.02 kB)
|
|