liufeng commited on
Commit
5b6026c
·
1 Parent(s): 5371673

update:readme

Browse files
Datasets-Construction/OpenSWI-real/CSRM/01_CSRM_Real.ipynb CHANGED
@@ -809,14 +809,14 @@
809
  "from cartopy.io.shapereader import Reader\n",
810
  "import matplotlib as mpl\n",
811
  "sys.path.append(\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/\")\n",
812
- "from DispFormer.plots import load_cpt\n",
813
  "\n",
814
  "# Load custom shapefile for coastlines\n",
815
- "custom_shapefile_path =\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/DispFormer/plot_source/ne_110m_admin_0_countries/ne_110m_admin_0_countries.shx\"\n",
816
  "coastline_feature = ShapelyFeature(Reader(custom_shapefile_path).geometries(), ccrs.PlateCarree())\n",
817
  "\n",
818
  "# load the colormap from GMT\n",
819
- "cpt_file = \"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/DispFormer/plot_source/GMT_panoply.cpt\"\n",
820
  "cmap = load_cpt(cpt_file,num_colors=20,reverse=True)\n",
821
  "\n",
822
  "\n",
 
809
  "from cartopy.io.shapereader import Reader\n",
810
  "import matplotlib as mpl\n",
811
  "sys.path.append(\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/\")\n",
812
+ "from SWInversion.plots import load_cpt\n",
813
  "\n",
814
  "# Load custom shapefile for coastlines\n",
815
+ "custom_shapefile_path =\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/SWInversion/plot_source/ne_110m_admin_0_countries/ne_110m_admin_0_countries.shx\"\n",
816
  "coastline_feature = ShapelyFeature(Reader(custom_shapefile_path).geometries(), ccrs.PlateCarree())\n",
817
  "\n",
818
  "# load the colormap from GMT\n",
819
+ "cpt_file = \"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/SWInversion/plot_source/GMT_panoply.cpt\"\n",
820
  "cmap = load_cpt(cpt_file,num_colors=20,reverse=True)\n",
821
  "\n",
822
  "\n",
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/Data-statistic.ipynb CHANGED
@@ -462,7 +462,7 @@
462
  }
463
  ],
464
  "source": [
465
- "from DispFormer.dispersion import *\n",
466
  "\n",
467
  "idx = 1000000\n",
468
  "\n",
@@ -544,7 +544,7 @@
544
  }
545
  ],
546
  "source": [
547
- "from DispFormer.dispersion import *\n",
548
  "new_vel_model_temp = new_vel_model_temp.astype(np.float64)\n",
549
  "t = generate_mixed_samples(num_samples=100,start=0.5,end=10,uniform_num=30,log_num=30,random_num=40)\n",
550
  "disp_res = calculate_dispersion(new_vel_model_temp,t=t,dc=0.001)\n",
 
462
  }
463
  ],
464
  "source": [
465
+ "from SWInversion.dispersion import *\n",
466
  "\n",
467
  "idx = 1000000\n",
468
  "\n",
 
544
  }
545
  ],
546
  "source": [
547
+ "from SWInversion.dispersion import *\n",
548
  "new_vel_model_temp = new_vel_model_temp.astype(np.float64)\n",
549
  "t = generate_mixed_samples(num_samples=100,start=0.5,end=10,uniform_num=30,log_num=30,random_num=40)\n",
550
  "disp_res = calculate_dispersion(new_vel_model_temp,t=t,dc=0.001)\n",
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/Data-statistic.ipynb CHANGED
@@ -570,7 +570,7 @@
570
  }
571
  ],
572
  "source": [
573
- "from DispFormer.dispersion import *\n",
574
  "\n",
575
  "idx = 1000000\n",
576
  "\n",
@@ -652,7 +652,7 @@
652
  }
653
  ],
654
  "source": [
655
- "from DispFormer.dispersion import *\n",
656
  "new_vel_model_temp = new_vel_model_temp.astype(np.float64)\n",
657
  "t = generate_mixed_samples(num_samples=100,start=0.5,end=10,uniform_num=30,log_num=30,random_num=40)\n",
658
  "disp_res = calculate_dispersion(new_vel_model_temp,t=t,dc=0.001)\n",
 
570
  }
571
  ],
572
  "source": [
573
+ "from SWInversion.dispersion import *\n",
574
  "\n",
575
  "idx = 1000000\n",
576
  "\n",
 
652
  }
653
  ],
654
  "source": [
655
+ "from SWInversion.dispersion import *\n",
656
  "new_vel_model_temp = new_vel_model_temp.astype(np.float64)\n",
657
  "t = generate_mixed_samples(num_samples=100,start=0.5,end=10,uniform_num=30,log_num=30,random_num=40)\n",
658
  "disp_res = calculate_dispersion(new_vel_model_temp,t=t,dc=0.001)\n",
Datasets/README.md ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
2
+ <h5 align="center">Feng Liu, Sijie Zhao, Xinyu Gu, Fenghua Lin, Yaxing Li*, Rui Su*, Jianping Huang, Lei Bai</h5>
3
+
4
+ ### Source of the OpenSWI
5
+
6
+ <table>
7
+ <thead>
8
+ <tr>
9
+ <th>Group</th>
10
+ <th>Reference</th>
11
+ <th>Datasets</th>
12
+ <th>Geological Feature/Cover Region</th>
13
+ <th>Model Variable</th>
14
+ <th>Model Size</th>
15
+ </tr>
16
+ </thead>
17
+ <tbody>
18
+ <tr>
19
+ <td rowspan="5">OpenSWI-shallow</td>
20
+ <td rowspan="5">Deng et al., 2021</td>
21
+ <td>OpenFWI-FlatVelA</td>
22
+ <td>Flat</td>
23
+ <td>vp</td>
24
+ <td>30,000 x 1 x 70 x 70</td>
25
+ </tr>
26
+ <tr>
27
+ <td>OpenFWI-Flat-FaultA</td>
28
+ <td>Flat + Fault</td>
29
+ <td>vp</td>
30
+ <td>54,000 x 1 x 70 x 70</td>
31
+ </tr>
32
+ <tr>
33
+ <td>OpenFWI-CurveVel</td>
34
+ <td>Fold</td>
35
+ <td>vp</td>
36
+ <td>30,000 x 1 x 70 x 70</td>
37
+ </tr>
38
+ <tr>
39
+ <td>OpenFWI-Fold-Fault</td>
40
+ <td>Fold + Fault</td>
41
+ <td>vp</td>
42
+ <td>54,000 x 1 x 70 x 70</td>
43
+ </tr>
44
+ <tr>
45
+ <td>OpenFWI-StyleA</td>
46
+ <td>Field</td>
47
+ <td>vp</td>
48
+ <td>67,000 x 1 x 70 x 70</td>
49
+ </tr>
50
+
51
+ <tr>
52
+ <td rowspan="14">OpenSWI-deep</td>
53
+ <td>Pasyanos et al., 2014</td>
54
+ <td>LITHO1.0</td>
55
+ <td>Global</td>
56
+ <td>depth, vs</td>
57
+ <td>40,962 x 2 x 96</td>
58
+ </tr>
59
+ <tr>
60
+ <td>Xin et al., 2018</td>
61
+ <td>USTClitho1.0</td>
62
+ <td>China</td>
63
+ <td>depth, vs</td>
64
+ <td>9,125 x 2 x 12</td>
65
+ </tr>
66
+ <tr>
67
+ <td>Shen et al., 2013</td>
68
+ <td>Central-and-Western US</td>
69
+ <td>Central and Western US</td>
70
+ <td>depth, vs</td>
71
+ <td>6,803 x 2 x 72</td>
72
+ </tr>
73
+ <tr>
74
+ <td>Shen et al., 2016</td>
75
+ <td>Continental China</td>
76
+ <td>China</td>
77
+ <td>depth, vs</td>
78
+ <td>4,516 x 2 x 400</td>
79
+ </tr>
80
+ <tr>
81
+ <td>Xie et al., 2018</td>
82
+ <td>US Upper-Mantle</td>
83
+ <td>American</td>
84
+ <td>depth, vs</td>
85
+ <td>3,678 x 2 x 600</td>
86
+ </tr>
87
+ <tr>
88
+ <td>Lu et al., 2018</td>
89
+ <td>EUcrust</td>
90
+ <td>European</td>
91
+ <td>depth, vs</td>
92
+ <td>43,520 x 2 x 80</td>
93
+ </tr>
94
+ <tr>
95
+ <td>Berg et al., 2020</td>
96
+ <td>Alaska</td>
97
+ <td>Alaska</td>
98
+ <td>depth, vs</td>
99
+ <td>19,408 x 2 x 156</td>
100
+ </tr>
101
+ <tr>
102
+ <td>Blom et al., 2020; Fichtner et al., 2018; Çubuk-Sabuncu et al., 2017</td>
103
+ <td>CSEM-Europe</td>
104
+ <td>European</td>
105
+ <td>depth, vsv, vsh</td>
106
+ <td>21,931 x 3 x 61</td>
107
+ </tr>
108
+ <tr>
109
+ <td>Blom et al., 2020; Fichtner et al., 2018</td>
110
+ <td>CSEM-Eastmed</td>
111
+ <td>Eastern Mediterranean</td>
112
+ <td>depth, vsv, vsh</td>
113
+ <td>12,782 x 3 x 81</td>
114
+ </tr>
115
+ <tr>
116
+ <td>Fichtner et al., 2018; Fichtner et al., 2015</td>
117
+ <td>CSEM-Iberian</td>
118
+ <td>Iberian (Western Mediterranean)</td>
119
+ <td>depth, vsv, vsh</td>
120
+ <td>9,102 x 3 x 81</td>
121
+ </tr>
122
+ <tr>
123
+ <td>Fichtner et al., 2018; Colli et al., 2013</td>
124
+ <td>CSEM-South Atlantic</td>
125
+ <td>South Atlantic</td>
126
+ <td>depth, vsv, vsh</td>
127
+ <td>7,371 x 3 x 51</td>
128
+ </tr>
129
+ <tr>
130
+ <td>Fichtner et al., 2018; Krischer et al., 2018</td>
131
+ <td>CSEM-North Atlantic</td>
132
+ <td>North Atlantic</td>
133
+ <td>depth, vsv, vsh</td>
134
+ <td>14,541 x 3 x 51</td>
135
+ </tr>
136
+ <tr>
137
+ <td>Fichtner et al., 2018; Simutė et al., 2016</td>
138
+ <td>CSEM-Japan</td>
139
+ <td>Japanese Islands</td>
140
+ <td>depth, vsv, vsh</td>
141
+ <td>14,641 x 3 x 61</td>
142
+ </tr>
143
+ <tr>
144
+ <td>Fichtner et al., 2018; Fichtner et al., 2010</td>
145
+ <td>CSEM-Astralasia</td>
146
+ <td>Australasian</td>
147
+ <td>depth, vsv, vsh</td>
148
+ <td>4,131 x 3 x 51</td>
149
+ </tr>
150
+
151
+ <tr>
152
+ <td rowspan="2">OpenSWI-real</td>
153
+ <td>Fu et al., 2022</td>
154
+ <td>LongBeach</td>
155
+ <td>American</td>
156
+ <td>depth, vs</td>
157
+ <td>5,297 x 2 x 241</td>
158
+ </tr>
159
+ <tr>
160
+ <td>Xiao et al., 2024</td>
161
+ <td>CSRM</td>
162
+ <td>Continental China</td>
163
+ <td>depth, vs</td>
164
+ <td>12,901 x 2 x 145</td>
165
+ </tr>
166
+ </tbody>
167
+ </table>
168
+
169
+ ---
170
+
171
+ ### Details of OpenSWI
172
+ <table>
173
+ <thead>
174
+ <tr>
175
+ <th>Group</th>
176
+ <th>Datasets</th>
177
+ <th>Period Range (s)</th>
178
+ <th>Depth Range and Interval (km)</th>
179
+ <th>Extracted 1D Velocity</th>
180
+ <th>Augmented 1D Velocity</th>
181
+ </tr>
182
+ </thead>
183
+ <tbody>
184
+
185
+ <tr>
186
+ <td rowspan="5">OpenSWI-shallow</td>
187
+ <td>OpenFWI-FlatVelA</td>
188
+ <td>0.1-10 s</td>
189
+ <td>0-2.8 km / 0.04 km</td>
190
+ <td>30,000 x 4 x 70</td>
191
+ <td>1,490,415 x 4 x 70</td>
192
+ </tr>
193
+ <tr>
194
+ <td>OpenFWI-Flat-FaultA</td>
195
+ <td>0.1-10 s</td>
196
+ <td>0-2.8 km / 0.04 km</td>
197
+ <td>292,941 x 4 x 70</td>
198
+ <td>2,925,151 x 4 x 70</td>
199
+ </tr>
200
+ <tr>
201
+ <td>OpenFWI-CurveVel</td>
202
+ <td>0.1-10 s</td>
203
+ <td>0-2.8 km / 0.04 km</td>
204
+ <td>295,773 x 4 x 70</td>
205
+ <td>2,952,975 x 4 x 70</td>
206
+ </tr>
207
+ <tr>
208
+ <td>OpenFWI-Fold-Fault</td>
209
+ <td>0.1-10 s</td>
210
+ <td>0-2.8 km / 0.04 km</td>
211
+ <td>537,774 x 4 x 70</td>
212
+ <td>5,369,692 x 4 x 70</td>
213
+ </tr>
214
+ <tr>
215
+ <td>OpenFWI-StyleA</td>
216
+ <td>0.1-10 s</td>
217
+ <td>0-2.8 km / 0.04 km</td>
218
+ <td>2,344,958 x 4 x 70</td>
219
+ <td>9,345,103 x 4 x 70</td>
220
+ </tr>
221
+
222
+ <tr>
223
+ <td rowspan="14">OpenSWI-deep</td>
224
+ <td>LITHO1.0</td>
225
+ <td>1-100 s</td>
226
+ <td>0-300 km / 1.0 km</td>
227
+ <td>40,959 x 4 x 300</td>
228
+ <td>245,771 x 4 x 70</td>
229
+ </tr>
230
+ <tr>
231
+ <td>USTClitho1.0</td>
232
+ <td>1-100 s</td>
233
+ <td>0-300 km / 1.0 km</td>
234
+ <td>9,125 x 4 x 300</td>
235
+ <td>54,750 x 4 x 70</td>
236
+ </tr>
237
+ <tr>
238
+ <td>Central-and-Western US</td>
239
+ <td>1-100 s</td>
240
+ <td>0-300 km / 1.0 km</td>
241
+ <td>6,803 x 4 x 300</td>
242
+ <td>40,818 x 4 x 70</td>
243
+ </tr>
244
+ <tr>
245
+ <td>Continental China</td>
246
+ <td>1-100 s</td>
247
+ <td>0-300 km / 1.0 km</td>
248
+ <td>4,516 x 4 x 300</td>
249
+ <td>27,096 x 4 x 70</td>
250
+ </tr>
251
+ <tr>
252
+ <td>US Upper-Mantle</td>
253
+ <td>1-100 s</td>
254
+ <td>0-300 km / 1.0 km</td>
255
+ <td>3,678 x 4 x 300</td>
256
+ <td>22,061 x 4 x 70</td>
257
+ </tr>
258
+ <tr>
259
+ <td>EUcrust</td>
260
+ <td>1-100 s</td>
261
+ <td>0-300 km / 1.0 km</td>
262
+ <td>43,520 x 4 x 300</td>
263
+ <td>261,155 x 4 x 70</td>
264
+ </tr>
265
+ <tr>
266
+ <td>Alaska</td>
267
+ <td>1-100 s</td>
268
+ <td>0-300 km / 1.0 km</td>
269
+ <td>19,408 x 4 x 300</td>
270
+ <td>116,448 x 4 x 70</td>
271
+ </tr>
272
+ <tr>
273
+ <td>CSEM-Europe</td>
274
+ <td>1-100 s</td>
275
+ <td>0-300 km / 1.0 km</td>
276
+ <td>21,931 x 4 x 300</td>
277
+ <td>131,586 x 4 x 70</td>
278
+ </tr>
279
+ <tr>
280
+ <td>CSEM-Eastmed</td>
281
+ <td>1-100 s</td>
282
+ <td>0-300 km / 1.0 km</td>
283
+ <td>12,782 x 4 x 300</td>
284
+ <td>76,692 x 4 x 70</td>
285
+ </tr>
286
+ <tr>
287
+ <td>CSEM-Iberian</td>
288
+ <td>1-100 s</td>
289
+ <td>0-300 km / 1.0 km</td>
290
+ <td>9,102 x 4 x 300</td>
291
+ <td>54,612 x 4 x 70</td>
292
+ </tr>
293
+ <tr>
294
+ <td>CSEM-South Atlantic</td>
295
+ <td>1-100 s</td>
296
+ <td>0-300 km / 1.0 km</td>
297
+ <td>7,371 x 4 x 300</td>
298
+ <td>44,226 x 4 x 70</td>
299
+ </tr>
300
+ <tr>
301
+ <td>CSEM-North Atlantic</td>
302
+ <td>1-100 s</td>
303
+ <td>0-300 km / 1.0 km</td>
304
+ <td>14,541 x 4 x 300</td>
305
+ <td>87,246 x 4 x 70</td>
306
+ </tr>
307
+ <tr>
308
+ <td>CSEM-Japan</td>
309
+ <td>1-100 s</td>
310
+ <td>0-300 km / 1.0 km</td>
311
+ <td>14,641 x 4 x 300</td>
312
+ <td>87,846 x 4 x 70</td>
313
+ </tr>
314
+ <tr>
315
+ <td>CSEM-Astralasia</td>
316
+ <td>1-100 s</td>
317
+ <td>0-300 km / 1.0 km</td>
318
+ <td>4,131 x 4 x 300</td>
319
+ <td>24,786 x 4 x 70</td>
320
+ </tr>
321
+
322
+ <tr>
323
+ <td rowspan="2">OpenSWI-real</td>
324
+ <td>LongBeach</td>
325
+ <td>0.263 - 1.666 s</td>
326
+ <td>0-1.4 km / 0.04 km</td>
327
+ <td>5,297 x 4 x 35</td>
328
+ <td>-</td>
329
+ </tr>
330
+ <tr>
331
+ <td>CSRM</td>
332
+ <td>8 - 70 s</td>
333
+ <td>0-120 km / 1.0 km</td>
334
+ <td>12,901 x 4 x 120</td>
335
+ <td>-</td>
336
+ </tr>
337
+
338
+ </tbody>
339
+ </table>
340
+
341
+ ---
342
+
343
+ ### Reference
344
+
345
+ 1. **X. Xiao et al.**, "CSRM‐1.0: A China Seismological Reference Model," *JGR Solid Earth*, vol. 129, no. 9, p. e2024JB029520, Sept. 2024, [doi: 10.1029/2024JB029520](https://doi.org/10.1029/2024JB029520).
346
+
347
+ 2. **L. Fu et al.**, "Improved high‐resolution 3D vs model of Long Beach, CA: Inversion of multimodal dispersion curves from ambient noise of a dense array," *Geophys. Res. Lett.*, vol. 49, no. 4, p. e2021GL097619, Feb. 2022, [doi: 10.1029/2021GL097619](https://doi.org/10.1029/2021GL097619).
348
+
349
+ 3. **C. Deng et al.**, “OpenFWI: Large-scale multi-structural benchmark datasets for full waveform inversion,” *Neural Information Processing Systems*, Nov. 2021, Accessed: Feb. 29, 2024. [Online]. Available: [https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33](https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33)
350
+
351
+ 4. **N. Blom et al.**, "Seismic waveform tomography of the central and eastern Mediterranean upper mantle," *Solid Earth*, vol. 11, no. 2, pp. 669–690, Apr. 2020, [doi: 10.5194/se-11-669-2020](https://doi.org/10.5194/se-11-669-2020).
352
+
353
+ 5. **E. M. Berg et al.**, "Shear velocity model of Alaska via joint inversion of Rayleigh wave ellipticity, phase velocities, and receiver functions across the Alaska transportable array," *J. Geophys. Res.: Solid Earth*, vol. 125, no. 2, Feb. 2020, [doi: 10.1029/2019jb018582](https://doi.org/10.1029/2019jb018582).
354
+
355
+ 6. **H. Xin et al.**, "High‐resolution lithospheric velocity structure of continental China by double‐difference seismic travel‐time tomography," *Seismol. Res. Lett.*, vol. 90, no. 1, pp. 229–241, Jan. 2019, [doi: 10.1785/0220180209](https://doi.org/10.1785/0220180209).
356
+
357
+ 7. **J. Xie et al.**, "3-D upper-mantle shear velocity model beneath the contiguous United States based on broadband surface wave from ambient seismic noise," *Pure Appl. Geophys.*, vol. 175, no. 10, pp. 3403–3418, Oct. 2018, [doi: 10.1007/s00024-018-1881-2](https://doi.org/10.1007/s00024-018-1881-2).
358
+
359
+ 8. **Y. Lu et al.**, "High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise," *Geophys. J. Int.*, vol. 214, no. 2, pp. 1136–1150, Aug. 2018, [doi: 10.1093/gji/ggy188](https://doi.org/10.1093/gji/ggy188).
360
+
361
+ 9. **L. Krischer et al.**, "Automated large‐scale full seismic waveform inversion for North America and the North Atlantic," *J. Geophys. Res.: Solid Earth*, vol. 123, no. 7, pp. 5902–5928, July 2018, [doi: 10.1029/2017JB015289](https://doi.org/10.1029/2017JB015289).
362
+
363
+ 10. **A. Fichtner et al.**, "The collaborative seismic earth model: generation 1," *Geophys. Res. Lett.*, vol. 45, no. 9, pp. 4007–4016, May 2018, [doi: 10.1029/2018gl077338](https://doi.org/10.1029/2018gl077338).
364
+
365
+ 11. **Y. Çubuk-Sabuncu et al.**, "3-D crustal velocity structure of western Turkey: constraints from full-waveform tomography," *Phys. Earth Planet. Inter.*, vol. 270, pp. 90–112, Sept. 2017, [doi: 10.1016/j.pepi.2017.06.014](https://doi.org/10.1016/j.pepi.2017.06.014).
366
+
367
+ 12. **S. Simutė et al.**, "Full‐waveform inversion of the Japanese islands region," *J. Geophys. Res.: Solid Earth*, vol. 121, no. 5, pp. 3722–3741, May 2016, [doi: 10.1002/2016jb012802](https://doi.org/10.1002/2016jb012802).
368
+
369
+ 13. **W. Shen et al.**, "A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion," *Geophys. J. Int.*, vol. 206, no. 2, pp. 954–979, Aug. 2016, [doi: 10.1093/gji/ggw175](https://doi.org/10.1093/gji/ggw175).
370
+
371
+ 14. **A. Fichtner and A. Villaseñor**, "Crust and upper mantle of the western Mediterranean – constraints from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 428, pp. 52–62, Oct. 2015, [doi: 10.1016/j.epsl.2015.07.038](https://doi.org/10.1016/j.epsl.2015.07.038).
372
+
373
+ 15. **M. E. Pasyanos et al.**, "LITHO1.0: An updated crust and lithospheric model of the Earth," *JGR Solid Earth*, vol. 119, no. 3, pp. 2153–2173, Mar. 2014, [doi: 10.1002/2013JB010626](https://doi.org/10.1002/2013JB010626).
374
+
375
+ 16. **W. Shen et al.**, "A 3‐D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion," *JGR Solid Earth*, vol. 118, no. 1, pp. 262–276, Jan. 2013, [doi: 10.1029/2012JB009602](https://doi.org/10.1029/2012JB009602).
376
+
377
+ 17. **F. Rickers et al.**, "The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 367, pp. 39–51, Apr. 2013, [doi: 10.1016/j.epsl.2013.02.022](https://doi.org/10.1016/j.epsl.2013.02.022).
378
+
379
+ 18. **L. Colli et al.**, "Full waveform tomography of the upper mantle in the South Atlantic region: imaging a westward fluxing shallow asthenosphere?," *Tectonophysics*, vol. 604, pp. 26–40, Sept. 2013, [doi: 10.1016/j.tecto.2013.06.015](https://doi.org/10.1016/j.tecto.2013.06.015).
380
+
381
+ 19. **C. Trabant et al.**, "Data products at the IRIS DMC: stepping stones for research and other applications," *Seismol. Res. Lett.*, vol. 83, no. 5, pp. 846–854, Sept. 2012, [doi: 10.1785/0220120032](https://doi.org/10.1785/0220120032).
382
+
383
+ 20. **A. Fichtner et al.**, "Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle," *Earth Planet. Sci. Lett.*, vol. 290, no. 3–4, pp. 270–280, Feb. 2010, [doi: 10.1016/j.epsl.2009.12.003](https://doi.org/10.1016/j.epsl.2009.12.003).
384
+
385
+ 21. **A. Fichtner et al.**, "Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods," *Geophys. J. Int.*, vol. 179, no. 3, pp. 1703–1725, Dec. 2009, [doi: 10.1111/j.1365-246x.2009.04368.x](https://doi.org/10.1111/j.1365-246x.2009.04368.x).
Figure/Figure1.png ADDED

Git LFS Details

  • SHA256: 7f3b5b0c06dab74ab6b7243bc2d88939a651fc1cc60291663adaa54f551542b8
  • Pointer size: 132 Bytes
  • Size of remote file: 6.28 MB
README.md CHANGED
@@ -11,7 +11,10 @@ size_categories:
11
  viewer: false
12
  ---
13
 
14
- # 🌍 **OpenSWI: A Massive Surface-Wave Dispersion Curve Inversion Benchmark Dataset**
 
 
 
15
 
16
  ## 📖 **Overview**
17
 
@@ -25,7 +28,178 @@ These datasets are ideal for training and evaluating deep learning models focuse
25
 
26
  ---
27
 
28
- ## 📊 **Datasets**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ### 🏞️ **OpenSWI-Shallow**
31
 
@@ -89,9 +263,30 @@ These models provide a comprehensive representation of both regional and global
89
  * The **period range** for these curves is **8 to 70 seconds**, ideal for studying deeper geological structures.
90
  * Data is sourced from a dense network of seismic stations across mainland China, offering comprehensive coverage for advanced inversion tasks.
91
 
92
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
 
 
95
  ## 🔍 **Reference**
96
  <details>
97
  <summary>Click to expand related works</summary>
@@ -99,39 +294,44 @@ These models provide a comprehensive representation of both regional and global
99
  1. **X. Xiao et al.**, "CSRM‐1.0: A China Seismological Reference Model," *JGR Solid Earth*, vol. 129, no. 9, p. e2024JB029520, Sept. 2024, [doi: 10.1029/2024JB029520](https://doi.org/10.1029/2024JB029520).
100
 
101
  2. **L. Fu et al.**, "Improved high‐resolution 3D vs model of Long Beach, CA: Inversion of multimodal dispersion curves from ambient noise of a dense array," *Geophys. Res. Lett.*, vol. 49, no. 4, p. e2021GL097619, Feb. 2022, [doi: 10.1029/2021GL097619](https://doi.org/10.1029/2021GL097619).
 
 
 
 
102
 
103
- 3. **N. Blom et al.**, "Seismic waveform tomography of the central and eastern Mediterranean upper mantle," *Solid Earth*, vol. 11, no. 2, pp. 669–690, Apr. 2020, [doi: 10.5194/se-11-669-2020](https://doi.org/10.5194/se-11-669-2020).
104
-
105
- 4. **E. M. Berg et al.**, "Shear velocity model of Alaska via joint inversion of Rayleigh wave ellipticity, phase velocities, and receiver functions across the Alaska transportable array," *J. Geophys. Res.: Solid Earth*, vol. 125, no. 2, Feb. 2020, [doi: 10.1029/2019jb018582](https://doi.org/10.1029/2019jb018582).
106
 
107
- 5. **H. Xin et al.**, "High‐resolution lithospheric velocity structure of continental China by double‐difference seismic travel‐time tomography," *Seismol. Res. Lett.*, vol. 90, no. 1, pp. 229–241, Jan. 2019, [doi: 10.1785/0220180209](https://doi.org/10.1785/0220180209).
108
 
109
- 6. **J. Xie et al.**, "3-D upper-mantle shear velocity model beneath the contiguous United States based on broadband surface wave from ambient seismic noise," *Pure Appl. Geophys.*, vol. 175, no. 10, pp. 3403–3418, Oct. 2018, [doi: 10.1007/s00024-018-1881-2](https://doi.org/10.1007/s00024-018-1881-2).
110
 
111
- 7. **Y. Lu et al.**, "High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise," *Geophys. J. Int.*, vol. 214, no. 2, pp. 1136–1150, Aug. 2018, [doi: 10.1093/gji/ggy188](https://doi.org/10.1093/gji/ggy188).
112
 
113
- 8. **L. Krischer et al.**, "Automated large‐scale full seismic waveform inversion for North America and the North Atlantic," *J. Geophys. Res.: Solid Earth*, vol. 123, no. 7, pp. 5902–5928, July 2018, [doi: 10.1029/2017JB015289](https://doi.org/10.1029/2017JB015289).
114
 
115
- 9. **A. Fichtner et al.**, "The collaborative seismic earth model: generation 1," *Geophys. Res. Lett.*, vol. 45, no. 9, pp. 4007–4016, May 2018, [doi: 10.1029/2018gl077338](https://doi.org/10.1029/2018gl077338).
116
 
117
- 10. **Y. Çubuk-Sabuncu et al.**, "3-D crustal velocity structure of western Turkey: constraints from full-waveform tomography," *Phys. Earth Planet. Inter.*, vol. 270, pp. 90–112, Sept. 2017, [doi: 10.1016/j.pepi.2017.06.014](https://doi.org/10.1016/j.pepi.2017.06.014).
118
 
119
- ...
120
 
121
- </details>
122
 
123
- ## 📚 **Citation**
124
 
125
- If you use this dataset in your research, please cite:
126
 
127
- ```bibtex
128
- @article{liufeng_2025_openswi,
129
- title={OpenSWI: A Massive Surface-Wave Dispersion Curve Inversion Benchmark Dataset},
130
- author={Feng Liu, Sijie Zhao},
131
- year={2025},
132
- }
133
- ```
134
 
135
- ## 📝 **License**
136
 
137
- Released under the **CC BY 4.0 License**. See the full license in the repository.
 
 
 
 
 
 
 
 
 
 
11
  viewer: false
12
  ---
13
 
14
+ <h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
15
+ <h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Lin, Yaxing Li*, Rui Su*, Jianping Huang, Lei Bai</h5>
16
+
17
+ ![](./Figure/Figure1.png)
18
 
19
  ## 📖 **Overview**
20
 
 
28
 
29
  ---
30
 
31
+ ## 📊 **OpenSWI Datasets**
32
+
33
+ <table>
34
+ <thead>
35
+ <tr>
36
+ <th>Group</th>
37
+ <th>Datasets</th>
38
+ <th>Period Range (s)</th>
39
+ <th>Depth Range and Interval (km)</th>
40
+ <th>Extracted 1D Velocity</th>
41
+ <th>Augmented 1D Velocity</th>
42
+ </tr>
43
+ </thead>
44
+ <tbody>
45
+
46
+ <tr>
47
+ <td rowspan="5"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-shallow/0.2-10s-Aug">OpenSWI-shallow</a></td>
48
+ <td>OpenFWI-FlatVelA</td>
49
+ <td>0.1-10 s</td>
50
+ <td>0-2.8 km / 0.04 km</td>
51
+ <td>30,000 x 4 x 70</td>
52
+ <td>1,490,415 x 4 x 70</td>
53
+ </tr>
54
+ <tr>
55
+ <td>OpenFWI-Flat-FaultA</td>
56
+ <td>0.1-10 s</td>
57
+ <td>0-2.8 km / 0.04 km</td>
58
+ <td>292,941 x 4 x 70</td>
59
+ <td>2,925,151 x 4 x 70</td>
60
+ </tr>
61
+ <tr>
62
+ <td>OpenFWI-CurveVel</td>
63
+ <td>0.1-10 s</td>
64
+ <td>0-2.8 km / 0.04 km</td>
65
+ <td>295,773 x 4 x 70</td>
66
+ <td>2,952,975 x 4 x 70</td>
67
+ </tr>
68
+ <tr>
69
+ <td>OpenFWI-Fold-Fault</td>
70
+ <td>0.1-10 s</td>
71
+ <td>0-2.8 km / 0.04 km</td>
72
+ <td>537,774 x 4 x 70</td>
73
+ <td>5,369,692 x 4 x 70</td>
74
+ </tr>
75
+ <tr>
76
+ <td>OpenFWI-StyleA</td>
77
+ <td>0.1-10 s</td>
78
+ <td>0-2.8 km / 0.04 km</td>
79
+ <td>2,344,958 x 4 x 70</td>
80
+ <td>9,345,103 x 4 x 70</td>
81
+ </tr>
82
+
83
+ <tr>
84
+ <td rowspan="14"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-deep/homo-thickness-aug">OpenSWI-deep</a></td>
85
+ <td>LITHO1.0</td>
86
+ <td>1-100 s</td>
87
+ <td>0-300 km / 1.0 km</td>
88
+ <td>40,959 x 4 x 300</td>
89
+ <td>245,771 x 4 x 70</td>
90
+ </tr>
91
+ <tr>
92
+ <td>USTClitho1.0</td>
93
+ <td>1-100 s</td>
94
+ <td>0-300 km / 1.0 km</td>
95
+ <td>9,125 x 4 x 300</td>
96
+ <td>54,750 x 4 x 70</td>
97
+ </tr>
98
+ <tr>
99
+ <td>Central-and-Western US</td>
100
+ <td>1-100 s</td>
101
+ <td>0-300 km / 1.0 km</td>
102
+ <td>6,803 x 4 x 300</td>
103
+ <td>40,818 x 4 x 70</td>
104
+ </tr>
105
+ <tr>
106
+ <td>Continental China</td>
107
+ <td>1-100 s</td>
108
+ <td>0-300 km / 1.0 km</td>
109
+ <td>4,516 x 4 x 300</td>
110
+ <td>27,096 x 4 x 70</td>
111
+ </tr>
112
+ <tr>
113
+ <td>US Upper-Mantle</td>
114
+ <td>1-100 s</td>
115
+ <td>0-300 km / 1.0 km</td>
116
+ <td>3,678 x 4 x 300</td>
117
+ <td>22,061 x 4 x 70</td>
118
+ </tr>
119
+ <tr>
120
+ <td>EUcrust</td>
121
+ <td>1-100 s</td>
122
+ <td>0-300 km / 1.0 km</td>
123
+ <td>43,520 x 4 x 300</td>
124
+ <td>261,155 x 4 x 70</td>
125
+ </tr>
126
+ <tr>
127
+ <td>Alaska</td>
128
+ <td>1-100 s</td>
129
+ <td>0-300 km / 1.0 km</td>
130
+ <td>19,408 x 4 x 300</td>
131
+ <td>116,448 x 4 x 70</td>
132
+ </tr>
133
+ <tr>
134
+ <td>CSEM-Europe</td>
135
+ <td>1-100 s</td>
136
+ <td>0-300 km / 1.0 km</td>
137
+ <td>21,931 x 4 x 300</td>
138
+ <td>131,586 x 4 x 70</td>
139
+ </tr>
140
+ <tr>
141
+ <td>CSEM-Eastmed</td>
142
+ <td>1-100 s</td>
143
+ <td>0-300 km / 1.0 km</td>
144
+ <td>12,782 x 4 x 300</td>
145
+ <td>76,692 x 4 x 70</td>
146
+ </tr>
147
+ <tr>
148
+ <td>CSEM-Iberian</td>
149
+ <td>1-100 s</td>
150
+ <td>0-300 km / 1.0 km</td>
151
+ <td>9,102 x 4 x 300</td>
152
+ <td>54,612 x 4 x 70</td>
153
+ </tr>
154
+ <tr>
155
+ <td>CSEM-South Atlantic</td>
156
+ <td>1-100 s</td>
157
+ <td>0-300 km / 1.0 km</td>
158
+ <td>7,371 x 4 x 300</td>
159
+ <td>44,226 x 4 x 70</td>
160
+ </tr>
161
+ <tr>
162
+ <td>CSEM-North Atlantic</td>
163
+ <td>1-100 s</td>
164
+ <td>0-300 km / 1.0 km</td>
165
+ <td>14,541 x 4 x 300</td>
166
+ <td>87,246 x 4 x 70</td>
167
+ </tr>
168
+ <tr>
169
+ <td>CSEM-Japan</td>
170
+ <td>1-100 s</td>
171
+ <td>0-300 km / 1.0 km</td>
172
+ <td>14,641 x 4 x 300</td>
173
+ <td>87,846 x 4 x 70</td>
174
+ </tr>
175
+ <tr>
176
+ <td>CSEM-Astralasia</td>
177
+ <td>1-100 s</td>
178
+ <td>0-300 km / 1.0 km</td>
179
+ <td>4,131 x 4 x 300</td>
180
+ <td>24,786 x 4 x 70</td>
181
+ </tr>
182
+
183
+ <tr>
184
+ <td rowspan="2"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/">OpenSWI-real</a></td>
185
+ <td><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/LongBeach">LongBeach</a></td>
186
+ <td>0.263 - 1.666 s</td>
187
+ <td>0-1.4 km / 0.04 km</td>
188
+ <td>5,297 x 4 x 35</td>
189
+ <td>-</td>
190
+ </tr>
191
+ <tr>
192
+ <td><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/CSRM">CSRM</a></td>
193
+ <td>8 - 70 s</td>
194
+ <td>0-120 km / 1.0 km</td>
195
+ <td>12,901 x 4 x 120</td>
196
+ <td>-</td>
197
+ </tr>
198
+
199
+ </tbody>
200
+ </table>
201
+
202
+ > Details of the source of datasets can be found at [OpenSWI](./Datasets/README.md)
203
 
204
  ### 🏞️ **OpenSWI-Shallow**
205
 
 
263
  * The **period range** for these curves is **8 to 70 seconds**, ideal for studying deeper geological structures.
264
  * Data is sourced from a dense network of seismic stations across mainland China, offering comprehensive coverage for advanced inversion tasks.
265
 
266
+
267
+ ----
268
+
269
+ ## 📚 **Citation**
270
+
271
+ If you use this dataset in your research, please cite:
272
+
273
+ ```bibtex
274
+ @article{liufeng_2025_openswi,
275
+ title={OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion},
276
+ author={Feng Liu, Sijie Zhao},
277
+ year={2025},
278
+ }
279
+ ```
280
+
281
+ ----
282
+
283
+
284
+ ## 📝 **License**
285
+
286
+ Released under the **CC BY 4.0 License**. See the full license in the repository.
287
 
288
 
289
+ ---
290
  ## 🔍 **Reference**
291
  <details>
292
  <summary>Click to expand related works</summary>
 
294
  1. **X. Xiao et al.**, "CSRM‐1.0: A China Seismological Reference Model," *JGR Solid Earth*, vol. 129, no. 9, p. e2024JB029520, Sept. 2024, [doi: 10.1029/2024JB029520](https://doi.org/10.1029/2024JB029520).
295
 
296
  2. **L. Fu et al.**, "Improved high‐resolution 3D vs model of Long Beach, CA: Inversion of multimodal dispersion curves from ambient noise of a dense array," *Geophys. Res. Lett.*, vol. 49, no. 4, p. e2021GL097619, Feb. 2022, [doi: 10.1029/2021GL097619](https://doi.org/10.1029/2021GL097619).
297
+
298
+ 3. **C. Deng et al.**, “OpenFWI: Large-scale multi-structural benchmark datasets for full waveform inversion,” *Neural Information Processing Systems*, Nov. 2021, Accessed: Feb. 29, 2024. [Online]. Available: [https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33](https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33)
299
+
300
+ 4. **N. Blom et al.**, "Seismic waveform tomography of the central and eastern Mediterranean upper mantle," *Solid Earth*, vol. 11, no. 2, pp. 669–690, Apr. 2020, [doi: 10.5194/se-11-669-2020](https://doi.org/10.5194/se-11-669-2020).
301
 
302
+ 5. **E. M. Berg et al.**, "Shear velocity model of Alaska via joint inversion of Rayleigh wave ellipticity, phase velocities, and receiver functions across the Alaska transportable array," *J. Geophys. Res.: Solid Earth*, vol. 125, no. 2, Feb. 2020, [doi: 10.1029/2019jb018582](https://doi.org/10.1029/2019jb018582).
 
 
303
 
304
+ 6. **H. Xin et al.**, "High‐resolution lithospheric velocity structure of continental China by double‐difference seismic travel‐time tomography," *Seismol. Res. Lett.*, vol. 90, no. 1, pp. 229–241, Jan. 2019, [doi: 10.1785/0220180209](https://doi.org/10.1785/0220180209).
305
 
306
+ 7. **J. Xie et al.**, "3-D upper-mantle shear velocity model beneath the contiguous United States based on broadband surface wave from ambient seismic noise," *Pure Appl. Geophys.*, vol. 175, no. 10, pp. 3403–3418, Oct. 2018, [doi: 10.1007/s00024-018-1881-2](https://doi.org/10.1007/s00024-018-1881-2).
307
 
308
+ 8. **Y. Lu et al.**, "High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise," *Geophys. J. Int.*, vol. 214, no. 2, pp. 1136–1150, Aug. 2018, [doi: 10.1093/gji/ggy188](https://doi.org/10.1093/gji/ggy188).
309
 
310
+ 9. **L. Krischer et al.**, "Automated large‐scale full seismic waveform inversion for North America and the North Atlantic," *J. Geophys. Res.: Solid Earth*, vol. 123, no. 7, pp. 5902–5928, July 2018, [doi: 10.1029/2017JB015289](https://doi.org/10.1029/2017JB015289).
311
 
312
+ 10. **A. Fichtner et al.**, "The collaborative seismic earth model: generation 1," *Geophys. Res. Lett.*, vol. 45, no. 9, pp. 4007–4016, May 2018, [doi: 10.1029/2018gl077338](https://doi.org/10.1029/2018gl077338).
313
 
314
+ 11. **Y. Çubuk-Sabuncu et al.**, "3-D crustal velocity structure of western Turkey: constraints from full-waveform tomography," *Phys. Earth Planet. Inter.*, vol. 270, pp. 90–112, Sept. 2017, [doi: 10.1016/j.pepi.2017.06.014](https://doi.org/10.1016/j.pepi.2017.06.014).
315
 
316
+ 12. **S. Simutė et al.**, "Full‐waveform inversion of the Japanese islands region," *J. Geophys. Res.: Solid Earth*, vol. 121, no. 5, pp. 3722–3741, May 2016, [doi: 10.1002/2016jb012802](https://doi.org/10.1002/2016jb012802).
317
 
318
+ 13. **W. Shen et al.**, "A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion," *Geophys. J. Int.*, vol. 206, no. 2, pp. 954–979, Aug. 2016, [doi: 10.1093/gji/ggw175](https://doi.org/10.1093/gji/ggw175).
319
 
320
+ 14. **A. Fichtner and A. Villaseñor**, "Crust and upper mantle of the western Mediterranean – constraints from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 428, pp. 52–62, Oct. 2015, [doi: 10.1016/j.epsl.2015.07.038](https://doi.org/10.1016/j.epsl.2015.07.038).
321
 
322
+ 15. **M. E. Pasyanos et al.**, "LITHO1.0: An updated crust and lithospheric model of the Earth," *JGR Solid Earth*, vol. 119, no. 3, pp. 2153–2173, Mar. 2014, [doi: 10.1002/2013JB010626](https://doi.org/10.1002/2013JB010626).
323
 
324
+ 16. **W. Shen et al.**, "A 3‐D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion," *JGR Solid Earth*, vol. 118, no. 1, pp. 262–276, Jan. 2013, [doi: 10.1029/2012JB009602](https://doi.org/10.1029/2012JB009602).
 
 
 
 
 
 
325
 
326
+ 17. **F. Rickers et al.**, "The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 367, pp. 39–51, Apr. 2013, [doi: 10.1016/j.epsl.2013.02.022](https://doi.org/10.1016/j.epsl.2013.02.022).
327
 
328
+ 18. **L. Colli et al.**, "Full waveform tomography of the upper mantle in the South Atlantic region: imaging a westward fluxing shallow asthenosphere?," *Tectonophysics*, vol. 604, pp. 26–40, Sept. 2013, [doi: 10.1016/j.tecto.2013.06.015](https://doi.org/10.1016/j.tecto.2013.06.015).
329
+
330
+ 19. **C. Trabant et al.**, "Data products at the IRIS DMC: stepping stones for research and other applications," *Seismol. Res. Lett.*, vol. 83, no. 5, pp. 846–854, Sept. 2012, [doi: 10.1785/0220120032](https://doi.org/10.1785/0220120032).
331
+
332
+ 20. **A. Fichtner et al.**, "Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle," *Earth Planet. Sci. Lett.*, vol. 290, no. 3–4, pp. 270–280, Feb. 2010, [doi: 10.1016/j.epsl.2009.12.003](https://doi.org/10.1016/j.epsl.2009.12.003).
333
+
334
+ 21. **A. Fichtner et al.**, "Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods," *Geophys. J. Int.*, vol. 179, no. 3, pp. 1703–1725, Dec. 2009, [doi: 10.1111/j.1365-246x.2009.04368.x](https://doi.org/10.1111/j.1365-246x.2009.04368.x).
335
+
336
+
337
+ </details>