liufeng
commited on
Commit
·
5b6026c
1
Parent(s):
5371673
update:readme
Browse files
Datasets-Construction/OpenSWI-real/CSRM/01_CSRM_Real.ipynb
CHANGED
@@ -809,14 +809,14 @@
|
|
809 |
"from cartopy.io.shapereader import Reader\n",
|
810 |
"import matplotlib as mpl\n",
|
811 |
"sys.path.append(\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/\")\n",
|
812 |
-
"from
|
813 |
"\n",
|
814 |
"# Load custom shapefile for coastlines\n",
|
815 |
-
"custom_shapefile_path =\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/
|
816 |
"coastline_feature = ShapelyFeature(Reader(custom_shapefile_path).geometries(), ccrs.PlateCarree())\n",
|
817 |
"\n",
|
818 |
"# load the colormap from GMT\n",
|
819 |
-
"cpt_file = \"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/
|
820 |
"cmap = load_cpt(cpt_file,num_colors=20,reverse=True)\n",
|
821 |
"\n",
|
822 |
"\n",
|
|
|
809 |
"from cartopy.io.shapereader import Reader\n",
|
810 |
"import matplotlib as mpl\n",
|
811 |
"sys.path.append(\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/\")\n",
|
812 |
+
"from SWInversion.plots import load_cpt\n",
|
813 |
"\n",
|
814 |
"# Load custom shapefile for coastlines\n",
|
815 |
+
"custom_shapefile_path =\"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/SWInversion/plot_source/ne_110m_admin_0_countries/ne_110m_admin_0_countries.shx\"\n",
|
816 |
"coastline_feature = ShapelyFeature(Reader(custom_shapefile_path).geometries(), ccrs.PlateCarree())\n",
|
817 |
"\n",
|
818 |
"# load the colormap from GMT\n",
|
819 |
+
"cpt_file = \"/home/bingxing2/ailab/scxlab0055/project/04_Inversion/SurfWaveInv/DispFormer-local/SWInversion/plot_source/GMT_panoply.cpt\"\n",
|
820 |
"cmap = load_cpt(cpt_file,num_colors=20,reverse=True)\n",
|
821 |
"\n",
|
822 |
"\n",
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Aug/Data-statistic.ipynb
CHANGED
@@ -462,7 +462,7 @@
|
|
462 |
}
|
463 |
],
|
464 |
"source": [
|
465 |
-
"from
|
466 |
"\n",
|
467 |
"idx = 1000000\n",
|
468 |
"\n",
|
@@ -544,7 +544,7 @@
|
|
544 |
}
|
545 |
],
|
546 |
"source": [
|
547 |
-
"from
|
548 |
"new_vel_model_temp = new_vel_model_temp.astype(np.float64)\n",
|
549 |
"t = generate_mixed_samples(num_samples=100,start=0.5,end=10,uniform_num=30,log_num=30,random_num=40)\n",
|
550 |
"disp_res = calculate_dispersion(new_vel_model_temp,t=t,dc=0.001)\n",
|
|
|
462 |
}
|
463 |
],
|
464 |
"source": [
|
465 |
+
"from SWInversion.dispersion import *\n",
|
466 |
"\n",
|
467 |
"idx = 1000000\n",
|
468 |
"\n",
|
|
|
544 |
}
|
545 |
],
|
546 |
"source": [
|
547 |
+
"from SWInversion.dispersion import *\n",
|
548 |
"new_vel_model_temp = new_vel_model_temp.astype(np.float64)\n",
|
549 |
"t = generate_mixed_samples(num_samples=100,start=0.5,end=10,uniform_num=30,log_num=30,random_num=40)\n",
|
550 |
"disp_res = calculate_dispersion(new_vel_model_temp,t=t,dc=0.001)\n",
|
Datasets-Construction/OpenSWI-shallow/0.2-10s-Base/Data-statistic.ipynb
CHANGED
@@ -570,7 +570,7 @@
|
|
570 |
}
|
571 |
],
|
572 |
"source": [
|
573 |
-
"from
|
574 |
"\n",
|
575 |
"idx = 1000000\n",
|
576 |
"\n",
|
@@ -652,7 +652,7 @@
|
|
652 |
}
|
653 |
],
|
654 |
"source": [
|
655 |
-
"from
|
656 |
"new_vel_model_temp = new_vel_model_temp.astype(np.float64)\n",
|
657 |
"t = generate_mixed_samples(num_samples=100,start=0.5,end=10,uniform_num=30,log_num=30,random_num=40)\n",
|
658 |
"disp_res = calculate_dispersion(new_vel_model_temp,t=t,dc=0.001)\n",
|
|
|
570 |
}
|
571 |
],
|
572 |
"source": [
|
573 |
+
"from SWInversion.dispersion import *\n",
|
574 |
"\n",
|
575 |
"idx = 1000000\n",
|
576 |
"\n",
|
|
|
652 |
}
|
653 |
],
|
654 |
"source": [
|
655 |
+
"from SWInversion.dispersion import *\n",
|
656 |
"new_vel_model_temp = new_vel_model_temp.astype(np.float64)\n",
|
657 |
"t = generate_mixed_samples(num_samples=100,start=0.5,end=10,uniform_num=30,log_num=30,random_num=40)\n",
|
658 |
"disp_res = calculate_dispersion(new_vel_model_temp,t=t,dc=0.001)\n",
|
Datasets/README.md
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
|
2 |
+
<h5 align="center">Feng Liu, Sijie Zhao, Xinyu Gu, Fenghua Lin, Yaxing Li*, Rui Su*, Jianping Huang, Lei Bai</h5>
|
3 |
+
|
4 |
+
### Source of the OpenSWI
|
5 |
+
|
6 |
+
<table>
|
7 |
+
<thead>
|
8 |
+
<tr>
|
9 |
+
<th>Group</th>
|
10 |
+
<th>Reference</th>
|
11 |
+
<th>Datasets</th>
|
12 |
+
<th>Geological Feature/Cover Region</th>
|
13 |
+
<th>Model Variable</th>
|
14 |
+
<th>Model Size</th>
|
15 |
+
</tr>
|
16 |
+
</thead>
|
17 |
+
<tbody>
|
18 |
+
<tr>
|
19 |
+
<td rowspan="5">OpenSWI-shallow</td>
|
20 |
+
<td rowspan="5">Deng et al., 2021</td>
|
21 |
+
<td>OpenFWI-FlatVelA</td>
|
22 |
+
<td>Flat</td>
|
23 |
+
<td>vp</td>
|
24 |
+
<td>30,000 x 1 x 70 x 70</td>
|
25 |
+
</tr>
|
26 |
+
<tr>
|
27 |
+
<td>OpenFWI-Flat-FaultA</td>
|
28 |
+
<td>Flat + Fault</td>
|
29 |
+
<td>vp</td>
|
30 |
+
<td>54,000 x 1 x 70 x 70</td>
|
31 |
+
</tr>
|
32 |
+
<tr>
|
33 |
+
<td>OpenFWI-CurveVel</td>
|
34 |
+
<td>Fold</td>
|
35 |
+
<td>vp</td>
|
36 |
+
<td>30,000 x 1 x 70 x 70</td>
|
37 |
+
</tr>
|
38 |
+
<tr>
|
39 |
+
<td>OpenFWI-Fold-Fault</td>
|
40 |
+
<td>Fold + Fault</td>
|
41 |
+
<td>vp</td>
|
42 |
+
<td>54,000 x 1 x 70 x 70</td>
|
43 |
+
</tr>
|
44 |
+
<tr>
|
45 |
+
<td>OpenFWI-StyleA</td>
|
46 |
+
<td>Field</td>
|
47 |
+
<td>vp</td>
|
48 |
+
<td>67,000 x 1 x 70 x 70</td>
|
49 |
+
</tr>
|
50 |
+
|
51 |
+
<tr>
|
52 |
+
<td rowspan="14">OpenSWI-deep</td>
|
53 |
+
<td>Pasyanos et al., 2014</td>
|
54 |
+
<td>LITHO1.0</td>
|
55 |
+
<td>Global</td>
|
56 |
+
<td>depth, vs</td>
|
57 |
+
<td>40,962 x 2 x 96</td>
|
58 |
+
</tr>
|
59 |
+
<tr>
|
60 |
+
<td>Xin et al., 2018</td>
|
61 |
+
<td>USTClitho1.0</td>
|
62 |
+
<td>China</td>
|
63 |
+
<td>depth, vs</td>
|
64 |
+
<td>9,125 x 2 x 12</td>
|
65 |
+
</tr>
|
66 |
+
<tr>
|
67 |
+
<td>Shen et al., 2013</td>
|
68 |
+
<td>Central-and-Western US</td>
|
69 |
+
<td>Central and Western US</td>
|
70 |
+
<td>depth, vs</td>
|
71 |
+
<td>6,803 x 2 x 72</td>
|
72 |
+
</tr>
|
73 |
+
<tr>
|
74 |
+
<td>Shen et al., 2016</td>
|
75 |
+
<td>Continental China</td>
|
76 |
+
<td>China</td>
|
77 |
+
<td>depth, vs</td>
|
78 |
+
<td>4,516 x 2 x 400</td>
|
79 |
+
</tr>
|
80 |
+
<tr>
|
81 |
+
<td>Xie et al., 2018</td>
|
82 |
+
<td>US Upper-Mantle</td>
|
83 |
+
<td>American</td>
|
84 |
+
<td>depth, vs</td>
|
85 |
+
<td>3,678 x 2 x 600</td>
|
86 |
+
</tr>
|
87 |
+
<tr>
|
88 |
+
<td>Lu et al., 2018</td>
|
89 |
+
<td>EUcrust</td>
|
90 |
+
<td>European</td>
|
91 |
+
<td>depth, vs</td>
|
92 |
+
<td>43,520 x 2 x 80</td>
|
93 |
+
</tr>
|
94 |
+
<tr>
|
95 |
+
<td>Berg et al., 2020</td>
|
96 |
+
<td>Alaska</td>
|
97 |
+
<td>Alaska</td>
|
98 |
+
<td>depth, vs</td>
|
99 |
+
<td>19,408 x 2 x 156</td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td>Blom et al., 2020; Fichtner et al., 2018; Çubuk-Sabuncu et al., 2017</td>
|
103 |
+
<td>CSEM-Europe</td>
|
104 |
+
<td>European</td>
|
105 |
+
<td>depth, vsv, vsh</td>
|
106 |
+
<td>21,931 x 3 x 61</td>
|
107 |
+
</tr>
|
108 |
+
<tr>
|
109 |
+
<td>Blom et al., 2020; Fichtner et al., 2018</td>
|
110 |
+
<td>CSEM-Eastmed</td>
|
111 |
+
<td>Eastern Mediterranean</td>
|
112 |
+
<td>depth, vsv, vsh</td>
|
113 |
+
<td>12,782 x 3 x 81</td>
|
114 |
+
</tr>
|
115 |
+
<tr>
|
116 |
+
<td>Fichtner et al., 2018; Fichtner et al., 2015</td>
|
117 |
+
<td>CSEM-Iberian</td>
|
118 |
+
<td>Iberian (Western Mediterranean)</td>
|
119 |
+
<td>depth, vsv, vsh</td>
|
120 |
+
<td>9,102 x 3 x 81</td>
|
121 |
+
</tr>
|
122 |
+
<tr>
|
123 |
+
<td>Fichtner et al., 2018; Colli et al., 2013</td>
|
124 |
+
<td>CSEM-South Atlantic</td>
|
125 |
+
<td>South Atlantic</td>
|
126 |
+
<td>depth, vsv, vsh</td>
|
127 |
+
<td>7,371 x 3 x 51</td>
|
128 |
+
</tr>
|
129 |
+
<tr>
|
130 |
+
<td>Fichtner et al., 2018; Krischer et al., 2018</td>
|
131 |
+
<td>CSEM-North Atlantic</td>
|
132 |
+
<td>North Atlantic</td>
|
133 |
+
<td>depth, vsv, vsh</td>
|
134 |
+
<td>14,541 x 3 x 51</td>
|
135 |
+
</tr>
|
136 |
+
<tr>
|
137 |
+
<td>Fichtner et al., 2018; Simutė et al., 2016</td>
|
138 |
+
<td>CSEM-Japan</td>
|
139 |
+
<td>Japanese Islands</td>
|
140 |
+
<td>depth, vsv, vsh</td>
|
141 |
+
<td>14,641 x 3 x 61</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>Fichtner et al., 2018; Fichtner et al., 2010</td>
|
145 |
+
<td>CSEM-Astralasia</td>
|
146 |
+
<td>Australasian</td>
|
147 |
+
<td>depth, vsv, vsh</td>
|
148 |
+
<td>4,131 x 3 x 51</td>
|
149 |
+
</tr>
|
150 |
+
|
151 |
+
<tr>
|
152 |
+
<td rowspan="2">OpenSWI-real</td>
|
153 |
+
<td>Fu et al., 2022</td>
|
154 |
+
<td>LongBeach</td>
|
155 |
+
<td>American</td>
|
156 |
+
<td>depth, vs</td>
|
157 |
+
<td>5,297 x 2 x 241</td>
|
158 |
+
</tr>
|
159 |
+
<tr>
|
160 |
+
<td>Xiao et al., 2024</td>
|
161 |
+
<td>CSRM</td>
|
162 |
+
<td>Continental China</td>
|
163 |
+
<td>depth, vs</td>
|
164 |
+
<td>12,901 x 2 x 145</td>
|
165 |
+
</tr>
|
166 |
+
</tbody>
|
167 |
+
</table>
|
168 |
+
|
169 |
+
---
|
170 |
+
|
171 |
+
### Details of OpenSWI
|
172 |
+
<table>
|
173 |
+
<thead>
|
174 |
+
<tr>
|
175 |
+
<th>Group</th>
|
176 |
+
<th>Datasets</th>
|
177 |
+
<th>Period Range (s)</th>
|
178 |
+
<th>Depth Range and Interval (km)</th>
|
179 |
+
<th>Extracted 1D Velocity</th>
|
180 |
+
<th>Augmented 1D Velocity</th>
|
181 |
+
</tr>
|
182 |
+
</thead>
|
183 |
+
<tbody>
|
184 |
+
|
185 |
+
<tr>
|
186 |
+
<td rowspan="5">OpenSWI-shallow</td>
|
187 |
+
<td>OpenFWI-FlatVelA</td>
|
188 |
+
<td>0.1-10 s</td>
|
189 |
+
<td>0-2.8 km / 0.04 km</td>
|
190 |
+
<td>30,000 x 4 x 70</td>
|
191 |
+
<td>1,490,415 x 4 x 70</td>
|
192 |
+
</tr>
|
193 |
+
<tr>
|
194 |
+
<td>OpenFWI-Flat-FaultA</td>
|
195 |
+
<td>0.1-10 s</td>
|
196 |
+
<td>0-2.8 km / 0.04 km</td>
|
197 |
+
<td>292,941 x 4 x 70</td>
|
198 |
+
<td>2,925,151 x 4 x 70</td>
|
199 |
+
</tr>
|
200 |
+
<tr>
|
201 |
+
<td>OpenFWI-CurveVel</td>
|
202 |
+
<td>0.1-10 s</td>
|
203 |
+
<td>0-2.8 km / 0.04 km</td>
|
204 |
+
<td>295,773 x 4 x 70</td>
|
205 |
+
<td>2,952,975 x 4 x 70</td>
|
206 |
+
</tr>
|
207 |
+
<tr>
|
208 |
+
<td>OpenFWI-Fold-Fault</td>
|
209 |
+
<td>0.1-10 s</td>
|
210 |
+
<td>0-2.8 km / 0.04 km</td>
|
211 |
+
<td>537,774 x 4 x 70</td>
|
212 |
+
<td>5,369,692 x 4 x 70</td>
|
213 |
+
</tr>
|
214 |
+
<tr>
|
215 |
+
<td>OpenFWI-StyleA</td>
|
216 |
+
<td>0.1-10 s</td>
|
217 |
+
<td>0-2.8 km / 0.04 km</td>
|
218 |
+
<td>2,344,958 x 4 x 70</td>
|
219 |
+
<td>9,345,103 x 4 x 70</td>
|
220 |
+
</tr>
|
221 |
+
|
222 |
+
<tr>
|
223 |
+
<td rowspan="14">OpenSWI-deep</td>
|
224 |
+
<td>LITHO1.0</td>
|
225 |
+
<td>1-100 s</td>
|
226 |
+
<td>0-300 km / 1.0 km</td>
|
227 |
+
<td>40,959 x 4 x 300</td>
|
228 |
+
<td>245,771 x 4 x 70</td>
|
229 |
+
</tr>
|
230 |
+
<tr>
|
231 |
+
<td>USTClitho1.0</td>
|
232 |
+
<td>1-100 s</td>
|
233 |
+
<td>0-300 km / 1.0 km</td>
|
234 |
+
<td>9,125 x 4 x 300</td>
|
235 |
+
<td>54,750 x 4 x 70</td>
|
236 |
+
</tr>
|
237 |
+
<tr>
|
238 |
+
<td>Central-and-Western US</td>
|
239 |
+
<td>1-100 s</td>
|
240 |
+
<td>0-300 km / 1.0 km</td>
|
241 |
+
<td>6,803 x 4 x 300</td>
|
242 |
+
<td>40,818 x 4 x 70</td>
|
243 |
+
</tr>
|
244 |
+
<tr>
|
245 |
+
<td>Continental China</td>
|
246 |
+
<td>1-100 s</td>
|
247 |
+
<td>0-300 km / 1.0 km</td>
|
248 |
+
<td>4,516 x 4 x 300</td>
|
249 |
+
<td>27,096 x 4 x 70</td>
|
250 |
+
</tr>
|
251 |
+
<tr>
|
252 |
+
<td>US Upper-Mantle</td>
|
253 |
+
<td>1-100 s</td>
|
254 |
+
<td>0-300 km / 1.0 km</td>
|
255 |
+
<td>3,678 x 4 x 300</td>
|
256 |
+
<td>22,061 x 4 x 70</td>
|
257 |
+
</tr>
|
258 |
+
<tr>
|
259 |
+
<td>EUcrust</td>
|
260 |
+
<td>1-100 s</td>
|
261 |
+
<td>0-300 km / 1.0 km</td>
|
262 |
+
<td>43,520 x 4 x 300</td>
|
263 |
+
<td>261,155 x 4 x 70</td>
|
264 |
+
</tr>
|
265 |
+
<tr>
|
266 |
+
<td>Alaska</td>
|
267 |
+
<td>1-100 s</td>
|
268 |
+
<td>0-300 km / 1.0 km</td>
|
269 |
+
<td>19,408 x 4 x 300</td>
|
270 |
+
<td>116,448 x 4 x 70</td>
|
271 |
+
</tr>
|
272 |
+
<tr>
|
273 |
+
<td>CSEM-Europe</td>
|
274 |
+
<td>1-100 s</td>
|
275 |
+
<td>0-300 km / 1.0 km</td>
|
276 |
+
<td>21,931 x 4 x 300</td>
|
277 |
+
<td>131,586 x 4 x 70</td>
|
278 |
+
</tr>
|
279 |
+
<tr>
|
280 |
+
<td>CSEM-Eastmed</td>
|
281 |
+
<td>1-100 s</td>
|
282 |
+
<td>0-300 km / 1.0 km</td>
|
283 |
+
<td>12,782 x 4 x 300</td>
|
284 |
+
<td>76,692 x 4 x 70</td>
|
285 |
+
</tr>
|
286 |
+
<tr>
|
287 |
+
<td>CSEM-Iberian</td>
|
288 |
+
<td>1-100 s</td>
|
289 |
+
<td>0-300 km / 1.0 km</td>
|
290 |
+
<td>9,102 x 4 x 300</td>
|
291 |
+
<td>54,612 x 4 x 70</td>
|
292 |
+
</tr>
|
293 |
+
<tr>
|
294 |
+
<td>CSEM-South Atlantic</td>
|
295 |
+
<td>1-100 s</td>
|
296 |
+
<td>0-300 km / 1.0 km</td>
|
297 |
+
<td>7,371 x 4 x 300</td>
|
298 |
+
<td>44,226 x 4 x 70</td>
|
299 |
+
</tr>
|
300 |
+
<tr>
|
301 |
+
<td>CSEM-North Atlantic</td>
|
302 |
+
<td>1-100 s</td>
|
303 |
+
<td>0-300 km / 1.0 km</td>
|
304 |
+
<td>14,541 x 4 x 300</td>
|
305 |
+
<td>87,246 x 4 x 70</td>
|
306 |
+
</tr>
|
307 |
+
<tr>
|
308 |
+
<td>CSEM-Japan</td>
|
309 |
+
<td>1-100 s</td>
|
310 |
+
<td>0-300 km / 1.0 km</td>
|
311 |
+
<td>14,641 x 4 x 300</td>
|
312 |
+
<td>87,846 x 4 x 70</td>
|
313 |
+
</tr>
|
314 |
+
<tr>
|
315 |
+
<td>CSEM-Astralasia</td>
|
316 |
+
<td>1-100 s</td>
|
317 |
+
<td>0-300 km / 1.0 km</td>
|
318 |
+
<td>4,131 x 4 x 300</td>
|
319 |
+
<td>24,786 x 4 x 70</td>
|
320 |
+
</tr>
|
321 |
+
|
322 |
+
<tr>
|
323 |
+
<td rowspan="2">OpenSWI-real</td>
|
324 |
+
<td>LongBeach</td>
|
325 |
+
<td>0.263 - 1.666 s</td>
|
326 |
+
<td>0-1.4 km / 0.04 km</td>
|
327 |
+
<td>5,297 x 4 x 35</td>
|
328 |
+
<td>-</td>
|
329 |
+
</tr>
|
330 |
+
<tr>
|
331 |
+
<td>CSRM</td>
|
332 |
+
<td>8 - 70 s</td>
|
333 |
+
<td>0-120 km / 1.0 km</td>
|
334 |
+
<td>12,901 x 4 x 120</td>
|
335 |
+
<td>-</td>
|
336 |
+
</tr>
|
337 |
+
|
338 |
+
</tbody>
|
339 |
+
</table>
|
340 |
+
|
341 |
+
---
|
342 |
+
|
343 |
+
### Reference
|
344 |
+
|
345 |
+
1. **X. Xiao et al.**, "CSRM‐1.0: A China Seismological Reference Model," *JGR Solid Earth*, vol. 129, no. 9, p. e2024JB029520, Sept. 2024, [doi: 10.1029/2024JB029520](https://doi.org/10.1029/2024JB029520).
|
346 |
+
|
347 |
+
2. **L. Fu et al.**, "Improved high‐resolution 3D vs model of Long Beach, CA: Inversion of multimodal dispersion curves from ambient noise of a dense array," *Geophys. Res. Lett.*, vol. 49, no. 4, p. e2021GL097619, Feb. 2022, [doi: 10.1029/2021GL097619](https://doi.org/10.1029/2021GL097619).
|
348 |
+
|
349 |
+
3. **C. Deng et al.**, “OpenFWI: Large-scale multi-structural benchmark datasets for full waveform inversion,” *Neural Information Processing Systems*, Nov. 2021, Accessed: Feb. 29, 2024. [Online]. Available: [https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33](https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33)
|
350 |
+
|
351 |
+
4. **N. Blom et al.**, "Seismic waveform tomography of the central and eastern Mediterranean upper mantle," *Solid Earth*, vol. 11, no. 2, pp. 669–690, Apr. 2020, [doi: 10.5194/se-11-669-2020](https://doi.org/10.5194/se-11-669-2020).
|
352 |
+
|
353 |
+
5. **E. M. Berg et al.**, "Shear velocity model of Alaska via joint inversion of Rayleigh wave ellipticity, phase velocities, and receiver functions across the Alaska transportable array," *J. Geophys. Res.: Solid Earth*, vol. 125, no. 2, Feb. 2020, [doi: 10.1029/2019jb018582](https://doi.org/10.1029/2019jb018582).
|
354 |
+
|
355 |
+
6. **H. Xin et al.**, "High‐resolution lithospheric velocity structure of continental China by double‐difference seismic travel‐time tomography," *Seismol. Res. Lett.*, vol. 90, no. 1, pp. 229–241, Jan. 2019, [doi: 10.1785/0220180209](https://doi.org/10.1785/0220180209).
|
356 |
+
|
357 |
+
7. **J. Xie et al.**, "3-D upper-mantle shear velocity model beneath the contiguous United States based on broadband surface wave from ambient seismic noise," *Pure Appl. Geophys.*, vol. 175, no. 10, pp. 3403–3418, Oct. 2018, [doi: 10.1007/s00024-018-1881-2](https://doi.org/10.1007/s00024-018-1881-2).
|
358 |
+
|
359 |
+
8. **Y. Lu et al.**, "High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise," *Geophys. J. Int.*, vol. 214, no. 2, pp. 1136–1150, Aug. 2018, [doi: 10.1093/gji/ggy188](https://doi.org/10.1093/gji/ggy188).
|
360 |
+
|
361 |
+
9. **L. Krischer et al.**, "Automated large‐scale full seismic waveform inversion for North America and the North Atlantic," *J. Geophys. Res.: Solid Earth*, vol. 123, no. 7, pp. 5902–5928, July 2018, [doi: 10.1029/2017JB015289](https://doi.org/10.1029/2017JB015289).
|
362 |
+
|
363 |
+
10. **A. Fichtner et al.**, "The collaborative seismic earth model: generation 1," *Geophys. Res. Lett.*, vol. 45, no. 9, pp. 4007–4016, May 2018, [doi: 10.1029/2018gl077338](https://doi.org/10.1029/2018gl077338).
|
364 |
+
|
365 |
+
11. **Y. Çubuk-Sabuncu et al.**, "3-D crustal velocity structure of western Turkey: constraints from full-waveform tomography," *Phys. Earth Planet. Inter.*, vol. 270, pp. 90–112, Sept. 2017, [doi: 10.1016/j.pepi.2017.06.014](https://doi.org/10.1016/j.pepi.2017.06.014).
|
366 |
+
|
367 |
+
12. **S. Simutė et al.**, "Full‐waveform inversion of the Japanese islands region," *J. Geophys. Res.: Solid Earth*, vol. 121, no. 5, pp. 3722–3741, May 2016, [doi: 10.1002/2016jb012802](https://doi.org/10.1002/2016jb012802).
|
368 |
+
|
369 |
+
13. **W. Shen et al.**, "A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion," *Geophys. J. Int.*, vol. 206, no. 2, pp. 954–979, Aug. 2016, [doi: 10.1093/gji/ggw175](https://doi.org/10.1093/gji/ggw175).
|
370 |
+
|
371 |
+
14. **A. Fichtner and A. Villaseñor**, "Crust and upper mantle of the western Mediterranean – constraints from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 428, pp. 52–62, Oct. 2015, [doi: 10.1016/j.epsl.2015.07.038](https://doi.org/10.1016/j.epsl.2015.07.038).
|
372 |
+
|
373 |
+
15. **M. E. Pasyanos et al.**, "LITHO1.0: An updated crust and lithospheric model of the Earth," *JGR Solid Earth*, vol. 119, no. 3, pp. 2153–2173, Mar. 2014, [doi: 10.1002/2013JB010626](https://doi.org/10.1002/2013JB010626).
|
374 |
+
|
375 |
+
16. **W. Shen et al.**, "A 3‐D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion," *JGR Solid Earth*, vol. 118, no. 1, pp. 262–276, Jan. 2013, [doi: 10.1029/2012JB009602](https://doi.org/10.1029/2012JB009602).
|
376 |
+
|
377 |
+
17. **F. Rickers et al.**, "The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 367, pp. 39–51, Apr. 2013, [doi: 10.1016/j.epsl.2013.02.022](https://doi.org/10.1016/j.epsl.2013.02.022).
|
378 |
+
|
379 |
+
18. **L. Colli et al.**, "Full waveform tomography of the upper mantle in the South Atlantic region: imaging a westward fluxing shallow asthenosphere?," *Tectonophysics*, vol. 604, pp. 26–40, Sept. 2013, [doi: 10.1016/j.tecto.2013.06.015](https://doi.org/10.1016/j.tecto.2013.06.015).
|
380 |
+
|
381 |
+
19. **C. Trabant et al.**, "Data products at the IRIS DMC: stepping stones for research and other applications," *Seismol. Res. Lett.*, vol. 83, no. 5, pp. 846–854, Sept. 2012, [doi: 10.1785/0220120032](https://doi.org/10.1785/0220120032).
|
382 |
+
|
383 |
+
20. **A. Fichtner et al.**, "Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle," *Earth Planet. Sci. Lett.*, vol. 290, no. 3–4, pp. 270–280, Feb. 2010, [doi: 10.1016/j.epsl.2009.12.003](https://doi.org/10.1016/j.epsl.2009.12.003).
|
384 |
+
|
385 |
+
21. **A. Fichtner et al.**, "Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods," *Geophys. J. Int.*, vol. 179, no. 3, pp. 1703–1725, Dec. 2009, [doi: 10.1111/j.1365-246x.2009.04368.x](https://doi.org/10.1111/j.1365-246x.2009.04368.x).
|
Figure/Figure1.png
ADDED
![]() |
Git LFS Details
|
README.md
CHANGED
@@ -11,7 +11,10 @@ size_categories:
|
|
11 |
viewer: false
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
## 📖 **Overview**
|
17 |
|
@@ -25,7 +28,178 @@ These datasets are ideal for training and evaluating deep learning models focuse
|
|
25 |
|
26 |
---
|
27 |
|
28 |
-
## 📊 **Datasets**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
### 🏞️ **OpenSWI-Shallow**
|
31 |
|
@@ -89,9 +263,30 @@ These models provide a comprehensive representation of both regional and global
|
|
89 |
* The **period range** for these curves is **8 to 70 seconds**, ideal for studying deeper geological structures.
|
90 |
* Data is sourced from a dense network of seismic stations across mainland China, offering comprehensive coverage for advanced inversion tasks.
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
|
|
95 |
## 🔍 **Reference**
|
96 |
<details>
|
97 |
<summary>Click to expand related works</summary>
|
@@ -99,39 +294,44 @@ These models provide a comprehensive representation of both regional and global
|
|
99 |
1. **X. Xiao et al.**, "CSRM‐1.0: A China Seismological Reference Model," *JGR Solid Earth*, vol. 129, no. 9, p. e2024JB029520, Sept. 2024, [doi: 10.1029/2024JB029520](https://doi.org/10.1029/2024JB029520).
|
100 |
|
101 |
2. **L. Fu et al.**, "Improved high‐resolution 3D vs model of Long Beach, CA: Inversion of multimodal dispersion curves from ambient noise of a dense array," *Geophys. Res. Lett.*, vol. 49, no. 4, p. e2021GL097619, Feb. 2022, [doi: 10.1029/2021GL097619](https://doi.org/10.1029/2021GL097619).
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
4. **E. M. Berg et al.**, "Shear velocity model of Alaska via joint inversion of Rayleigh wave ellipticity, phase velocities, and receiver functions across the Alaska transportable array," *J. Geophys. Res.: Solid Earth*, vol. 125, no. 2, Feb. 2020, [doi: 10.1029/2019jb018582](https://doi.org/10.1029/2019jb018582).
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
110 |
|
111 |
-
|
112 |
|
113 |
-
|
114 |
|
115 |
-
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
@article{liufeng_2025_openswi,
|
129 |
-
title={OpenSWI: A Massive Surface-Wave Dispersion Curve Inversion Benchmark Dataset},
|
130 |
-
author={Feng Liu, Sijie Zhao},
|
131 |
-
year={2025},
|
132 |
-
}
|
133 |
-
```
|
134 |
|
135 |
-
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
viewer: false
|
12 |
---
|
13 |
|
14 |
+
<h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
|
15 |
+
<h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Lin, Yaxing Li*, Rui Su*, Jianping Huang, Lei Bai</h5>
|
16 |
+
|
17 |
+

|
18 |
|
19 |
## 📖 **Overview**
|
20 |
|
|
|
28 |
|
29 |
---
|
30 |
|
31 |
+
## 📊 **OpenSWI Datasets**
|
32 |
+
|
33 |
+
<table>
|
34 |
+
<thead>
|
35 |
+
<tr>
|
36 |
+
<th>Group</th>
|
37 |
+
<th>Datasets</th>
|
38 |
+
<th>Period Range (s)</th>
|
39 |
+
<th>Depth Range and Interval (km)</th>
|
40 |
+
<th>Extracted 1D Velocity</th>
|
41 |
+
<th>Augmented 1D Velocity</th>
|
42 |
+
</tr>
|
43 |
+
</thead>
|
44 |
+
<tbody>
|
45 |
+
|
46 |
+
<tr>
|
47 |
+
<td rowspan="5"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-shallow/0.2-10s-Aug">OpenSWI-shallow</a></td>
|
48 |
+
<td>OpenFWI-FlatVelA</td>
|
49 |
+
<td>0.1-10 s</td>
|
50 |
+
<td>0-2.8 km / 0.04 km</td>
|
51 |
+
<td>30,000 x 4 x 70</td>
|
52 |
+
<td>1,490,415 x 4 x 70</td>
|
53 |
+
</tr>
|
54 |
+
<tr>
|
55 |
+
<td>OpenFWI-Flat-FaultA</td>
|
56 |
+
<td>0.1-10 s</td>
|
57 |
+
<td>0-2.8 km / 0.04 km</td>
|
58 |
+
<td>292,941 x 4 x 70</td>
|
59 |
+
<td>2,925,151 x 4 x 70</td>
|
60 |
+
</tr>
|
61 |
+
<tr>
|
62 |
+
<td>OpenFWI-CurveVel</td>
|
63 |
+
<td>0.1-10 s</td>
|
64 |
+
<td>0-2.8 km / 0.04 km</td>
|
65 |
+
<td>295,773 x 4 x 70</td>
|
66 |
+
<td>2,952,975 x 4 x 70</td>
|
67 |
+
</tr>
|
68 |
+
<tr>
|
69 |
+
<td>OpenFWI-Fold-Fault</td>
|
70 |
+
<td>0.1-10 s</td>
|
71 |
+
<td>0-2.8 km / 0.04 km</td>
|
72 |
+
<td>537,774 x 4 x 70</td>
|
73 |
+
<td>5,369,692 x 4 x 70</td>
|
74 |
+
</tr>
|
75 |
+
<tr>
|
76 |
+
<td>OpenFWI-StyleA</td>
|
77 |
+
<td>0.1-10 s</td>
|
78 |
+
<td>0-2.8 km / 0.04 km</td>
|
79 |
+
<td>2,344,958 x 4 x 70</td>
|
80 |
+
<td>9,345,103 x 4 x 70</td>
|
81 |
+
</tr>
|
82 |
+
|
83 |
+
<tr>
|
84 |
+
<td rowspan="14"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-deep/homo-thickness-aug">OpenSWI-deep</a></td>
|
85 |
+
<td>LITHO1.0</td>
|
86 |
+
<td>1-100 s</td>
|
87 |
+
<td>0-300 km / 1.0 km</td>
|
88 |
+
<td>40,959 x 4 x 300</td>
|
89 |
+
<td>245,771 x 4 x 70</td>
|
90 |
+
</tr>
|
91 |
+
<tr>
|
92 |
+
<td>USTClitho1.0</td>
|
93 |
+
<td>1-100 s</td>
|
94 |
+
<td>0-300 km / 1.0 km</td>
|
95 |
+
<td>9,125 x 4 x 300</td>
|
96 |
+
<td>54,750 x 4 x 70</td>
|
97 |
+
</tr>
|
98 |
+
<tr>
|
99 |
+
<td>Central-and-Western US</td>
|
100 |
+
<td>1-100 s</td>
|
101 |
+
<td>0-300 km / 1.0 km</td>
|
102 |
+
<td>6,803 x 4 x 300</td>
|
103 |
+
<td>40,818 x 4 x 70</td>
|
104 |
+
</tr>
|
105 |
+
<tr>
|
106 |
+
<td>Continental China</td>
|
107 |
+
<td>1-100 s</td>
|
108 |
+
<td>0-300 km / 1.0 km</td>
|
109 |
+
<td>4,516 x 4 x 300</td>
|
110 |
+
<td>27,096 x 4 x 70</td>
|
111 |
+
</tr>
|
112 |
+
<tr>
|
113 |
+
<td>US Upper-Mantle</td>
|
114 |
+
<td>1-100 s</td>
|
115 |
+
<td>0-300 km / 1.0 km</td>
|
116 |
+
<td>3,678 x 4 x 300</td>
|
117 |
+
<td>22,061 x 4 x 70</td>
|
118 |
+
</tr>
|
119 |
+
<tr>
|
120 |
+
<td>EUcrust</td>
|
121 |
+
<td>1-100 s</td>
|
122 |
+
<td>0-300 km / 1.0 km</td>
|
123 |
+
<td>43,520 x 4 x 300</td>
|
124 |
+
<td>261,155 x 4 x 70</td>
|
125 |
+
</tr>
|
126 |
+
<tr>
|
127 |
+
<td>Alaska</td>
|
128 |
+
<td>1-100 s</td>
|
129 |
+
<td>0-300 km / 1.0 km</td>
|
130 |
+
<td>19,408 x 4 x 300</td>
|
131 |
+
<td>116,448 x 4 x 70</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td>CSEM-Europe</td>
|
135 |
+
<td>1-100 s</td>
|
136 |
+
<td>0-300 km / 1.0 km</td>
|
137 |
+
<td>21,931 x 4 x 300</td>
|
138 |
+
<td>131,586 x 4 x 70</td>
|
139 |
+
</tr>
|
140 |
+
<tr>
|
141 |
+
<td>CSEM-Eastmed</td>
|
142 |
+
<td>1-100 s</td>
|
143 |
+
<td>0-300 km / 1.0 km</td>
|
144 |
+
<td>12,782 x 4 x 300</td>
|
145 |
+
<td>76,692 x 4 x 70</td>
|
146 |
+
</tr>
|
147 |
+
<tr>
|
148 |
+
<td>CSEM-Iberian</td>
|
149 |
+
<td>1-100 s</td>
|
150 |
+
<td>0-300 km / 1.0 km</td>
|
151 |
+
<td>9,102 x 4 x 300</td>
|
152 |
+
<td>54,612 x 4 x 70</td>
|
153 |
+
</tr>
|
154 |
+
<tr>
|
155 |
+
<td>CSEM-South Atlantic</td>
|
156 |
+
<td>1-100 s</td>
|
157 |
+
<td>0-300 km / 1.0 km</td>
|
158 |
+
<td>7,371 x 4 x 300</td>
|
159 |
+
<td>44,226 x 4 x 70</td>
|
160 |
+
</tr>
|
161 |
+
<tr>
|
162 |
+
<td>CSEM-North Atlantic</td>
|
163 |
+
<td>1-100 s</td>
|
164 |
+
<td>0-300 km / 1.0 km</td>
|
165 |
+
<td>14,541 x 4 x 300</td>
|
166 |
+
<td>87,246 x 4 x 70</td>
|
167 |
+
</tr>
|
168 |
+
<tr>
|
169 |
+
<td>CSEM-Japan</td>
|
170 |
+
<td>1-100 s</td>
|
171 |
+
<td>0-300 km / 1.0 km</td>
|
172 |
+
<td>14,641 x 4 x 300</td>
|
173 |
+
<td>87,846 x 4 x 70</td>
|
174 |
+
</tr>
|
175 |
+
<tr>
|
176 |
+
<td>CSEM-Astralasia</td>
|
177 |
+
<td>1-100 s</td>
|
178 |
+
<td>0-300 km / 1.0 km</td>
|
179 |
+
<td>4,131 x 4 x 300</td>
|
180 |
+
<td>24,786 x 4 x 70</td>
|
181 |
+
</tr>
|
182 |
+
|
183 |
+
<tr>
|
184 |
+
<td rowspan="2"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/">OpenSWI-real</a></td>
|
185 |
+
<td><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/LongBeach">LongBeach</a></td>
|
186 |
+
<td>0.263 - 1.666 s</td>
|
187 |
+
<td>0-1.4 km / 0.04 km</td>
|
188 |
+
<td>5,297 x 4 x 35</td>
|
189 |
+
<td>-</td>
|
190 |
+
</tr>
|
191 |
+
<tr>
|
192 |
+
<td><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/CSRM">CSRM</a></td>
|
193 |
+
<td>8 - 70 s</td>
|
194 |
+
<td>0-120 km / 1.0 km</td>
|
195 |
+
<td>12,901 x 4 x 120</td>
|
196 |
+
<td>-</td>
|
197 |
+
</tr>
|
198 |
+
|
199 |
+
</tbody>
|
200 |
+
</table>
|
201 |
+
|
202 |
+
> Details of the source of datasets can be found at [OpenSWI](./Datasets/README.md)
|
203 |
|
204 |
### 🏞️ **OpenSWI-Shallow**
|
205 |
|
|
|
263 |
* The **period range** for these curves is **8 to 70 seconds**, ideal for studying deeper geological structures.
|
264 |
* Data is sourced from a dense network of seismic stations across mainland China, offering comprehensive coverage for advanced inversion tasks.
|
265 |
|
266 |
+
|
267 |
+
----
|
268 |
+
|
269 |
+
## 📚 **Citation**
|
270 |
+
|
271 |
+
If you use this dataset in your research, please cite:
|
272 |
+
|
273 |
+
```bibtex
|
274 |
+
@article{liufeng_2025_openswi,
|
275 |
+
title={OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion},
|
276 |
+
author={Feng Liu, Sijie Zhao},
|
277 |
+
year={2025},
|
278 |
+
}
|
279 |
+
```
|
280 |
+
|
281 |
+
----
|
282 |
+
|
283 |
+
|
284 |
+
## 📝 **License**
|
285 |
+
|
286 |
+
Released under the **CC BY 4.0 License**. See the full license in the repository.
|
287 |
|
288 |
|
289 |
+
---
|
290 |
## 🔍 **Reference**
|
291 |
<details>
|
292 |
<summary>Click to expand related works</summary>
|
|
|
294 |
1. **X. Xiao et al.**, "CSRM‐1.0: A China Seismological Reference Model," *JGR Solid Earth*, vol. 129, no. 9, p. e2024JB029520, Sept. 2024, [doi: 10.1029/2024JB029520](https://doi.org/10.1029/2024JB029520).
|
295 |
|
296 |
2. **L. Fu et al.**, "Improved high‐resolution 3D vs model of Long Beach, CA: Inversion of multimodal dispersion curves from ambient noise of a dense array," *Geophys. Res. Lett.*, vol. 49, no. 4, p. e2021GL097619, Feb. 2022, [doi: 10.1029/2021GL097619](https://doi.org/10.1029/2021GL097619).
|
297 |
+
|
298 |
+
3. **C. Deng et al.**, “OpenFWI: Large-scale multi-structural benchmark datasets for full waveform inversion,” *Neural Information Processing Systems*, Nov. 2021, Accessed: Feb. 29, 2024. [Online]. Available: [https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33](https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33)
|
299 |
+
|
300 |
+
4. **N. Blom et al.**, "Seismic waveform tomography of the central and eastern Mediterranean upper mantle," *Solid Earth*, vol. 11, no. 2, pp. 669–690, Apr. 2020, [doi: 10.5194/se-11-669-2020](https://doi.org/10.5194/se-11-669-2020).
|
301 |
|
302 |
+
5. **E. M. Berg et al.**, "Shear velocity model of Alaska via joint inversion of Rayleigh wave ellipticity, phase velocities, and receiver functions across the Alaska transportable array," *J. Geophys. Res.: Solid Earth*, vol. 125, no. 2, Feb. 2020, [doi: 10.1029/2019jb018582](https://doi.org/10.1029/2019jb018582).
|
|
|
|
|
303 |
|
304 |
+
6. **H. Xin et al.**, "High‐resolution lithospheric velocity structure of continental China by double‐difference seismic travel‐time tomography," *Seismol. Res. Lett.*, vol. 90, no. 1, pp. 229–241, Jan. 2019, [doi: 10.1785/0220180209](https://doi.org/10.1785/0220180209).
|
305 |
|
306 |
+
7. **J. Xie et al.**, "3-D upper-mantle shear velocity model beneath the contiguous United States based on broadband surface wave from ambient seismic noise," *Pure Appl. Geophys.*, vol. 175, no. 10, pp. 3403–3418, Oct. 2018, [doi: 10.1007/s00024-018-1881-2](https://doi.org/10.1007/s00024-018-1881-2).
|
307 |
|
308 |
+
8. **Y. Lu et al.**, "High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise," *Geophys. J. Int.*, vol. 214, no. 2, pp. 1136–1150, Aug. 2018, [doi: 10.1093/gji/ggy188](https://doi.org/10.1093/gji/ggy188).
|
309 |
|
310 |
+
9. **L. Krischer et al.**, "Automated large‐scale full seismic waveform inversion for North America and the North Atlantic," *J. Geophys. Res.: Solid Earth*, vol. 123, no. 7, pp. 5902–5928, July 2018, [doi: 10.1029/2017JB015289](https://doi.org/10.1029/2017JB015289).
|
311 |
|
312 |
+
10. **A. Fichtner et al.**, "The collaborative seismic earth model: generation 1," *Geophys. Res. Lett.*, vol. 45, no. 9, pp. 4007–4016, May 2018, [doi: 10.1029/2018gl077338](https://doi.org/10.1029/2018gl077338).
|
313 |
|
314 |
+
11. **Y. Çubuk-Sabuncu et al.**, "3-D crustal velocity structure of western Turkey: constraints from full-waveform tomography," *Phys. Earth Planet. Inter.*, vol. 270, pp. 90–112, Sept. 2017, [doi: 10.1016/j.pepi.2017.06.014](https://doi.org/10.1016/j.pepi.2017.06.014).
|
315 |
|
316 |
+
12. **S. Simutė et al.**, "Full‐waveform inversion of the Japanese islands region," *J. Geophys. Res.: Solid Earth*, vol. 121, no. 5, pp. 3722–3741, May 2016, [doi: 10.1002/2016jb012802](https://doi.org/10.1002/2016jb012802).
|
317 |
|
318 |
+
13. **W. Shen et al.**, "A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion," *Geophys. J. Int.*, vol. 206, no. 2, pp. 954–979, Aug. 2016, [doi: 10.1093/gji/ggw175](https://doi.org/10.1093/gji/ggw175).
|
319 |
|
320 |
+
14. **A. Fichtner and A. Villaseñor**, "Crust and upper mantle of the western Mediterranean – constraints from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 428, pp. 52–62, Oct. 2015, [doi: 10.1016/j.epsl.2015.07.038](https://doi.org/10.1016/j.epsl.2015.07.038).
|
321 |
|
322 |
+
15. **M. E. Pasyanos et al.**, "LITHO1.0: An updated crust and lithospheric model of the Earth," *JGR Solid Earth*, vol. 119, no. 3, pp. 2153–2173, Mar. 2014, [doi: 10.1002/2013JB010626](https://doi.org/10.1002/2013JB010626).
|
323 |
|
324 |
+
16. **W. Shen et al.**, "A 3‐D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion," *JGR Solid Earth*, vol. 118, no. 1, pp. 262–276, Jan. 2013, [doi: 10.1029/2012JB009602](https://doi.org/10.1029/2012JB009602).
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
+
17. **F. Rickers et al.**, "The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 367, pp. 39–51, Apr. 2013, [doi: 10.1016/j.epsl.2013.02.022](https://doi.org/10.1016/j.epsl.2013.02.022).
|
327 |
|
328 |
+
18. **L. Colli et al.**, "Full waveform tomography of the upper mantle in the South Atlantic region: imaging a westward fluxing shallow asthenosphere?," *Tectonophysics*, vol. 604, pp. 26–40, Sept. 2013, [doi: 10.1016/j.tecto.2013.06.015](https://doi.org/10.1016/j.tecto.2013.06.015).
|
329 |
+
|
330 |
+
19. **C. Trabant et al.**, "Data products at the IRIS DMC: stepping stones for research and other applications," *Seismol. Res. Lett.*, vol. 83, no. 5, pp. 846–854, Sept. 2012, [doi: 10.1785/0220120032](https://doi.org/10.1785/0220120032).
|
331 |
+
|
332 |
+
20. **A. Fichtner et al.**, "Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle," *Earth Planet. Sci. Lett.*, vol. 290, no. 3–4, pp. 270–280, Feb. 2010, [doi: 10.1016/j.epsl.2009.12.003](https://doi.org/10.1016/j.epsl.2009.12.003).
|
333 |
+
|
334 |
+
21. **A. Fichtner et al.**, "Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods," *Geophys. J. Int.*, vol. 179, no. 3, pp. 1703–1725, Dec. 2009, [doi: 10.1111/j.1365-246x.2009.04368.x](https://doi.org/10.1111/j.1365-246x.2009.04368.x).
|
335 |
+
|
336 |
+
|
337 |
+
</details>
|