Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,196 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: other
|
| 3 |
-
license_name: lo-license
|
| 4 |
-
license_link: >-
|
| 5 |
-
https://customers.livingoptics.com/hubfs/Outbound/Legal/Living%20Optics%20EULA.pdf
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: lo-license
|
| 4 |
+
license_link: >-
|
| 5 |
+
https://customers.livingoptics.com/hubfs/Outbound/Legal/Living%20Optics%20EULA.pdf
|
| 6 |
+
task_categories:
|
| 7 |
+
- image-segmentation
|
| 8 |
+
- image-classification
|
| 9 |
+
language:
|
| 10 |
+
- en
|
| 11 |
+
tags:
|
| 12 |
+
- forensics
|
| 13 |
+
- blood detection
|
| 14 |
+
- blood classification
|
| 15 |
+
- hyperspectral
|
| 16 |
+
size_categories:
|
| 17 |
+
- 10K<n<100K
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# Living Optics Forensics Dataset
|
| 21 |
+
|
| 22 |
+

|
| 23 |
+
|
| 24 |
+
## Overview
|
| 25 |
+
|
| 26 |
+
This dataset contains **217 images** captured during a **forensics application investigation** using the **Living Optics Camera**.
|
| 27 |
+
|
| 28 |
+
The data includes:
|
| 29 |
+
- **RGB images**
|
| 30 |
+
- **Sparse spectral samples**
|
| 31 |
+
- **Instance segmentation masks**
|
| 32 |
+
|
| 33 |
+
It is derived from over **200 unique raw files**, corresponding to 217 frames. The dataset has **not** been split into training/validation sets — the choice of split is left to the developer.
|
| 34 |
+
|
| 35 |
+
### Contents
|
| 36 |
+
- **242 instances** of horse blood captured on various surfaces.
|
| 37 |
+
- **166 instances** of blood confusers (e.g., fake blood, ketchup) across **21 different surfaces**.
|
| 38 |
+
- A **total of 408 labeled instances**.
|
| 39 |
+
|
| 40 |
+
Additionally, the dataset contains **library spectra** captured with a spectrometer covering the wavelength range **350–1000 nm**, sampled at a higher resolution than the Living Optics camera.
|
| 41 |
+
These spectra can be used for:
|
| 42 |
+
- Spectral lookup–style algorithms
|
| 43 |
+
- Outlier filtering
|
| 44 |
+
- **Negative sampling** when spectra do not fall within labeled segmentation masks
|
| 45 |
+
|
| 46 |
+
Extra **unlabeled data** is available upon request.
|
| 47 |
+
|
| 48 |
+
## Classes
|
| 49 |
+
|
| 50 |
+
The dataset contains **25 classes**:
|
| 51 |
+
|
| 52 |
+
| ID | Class Name |
|
| 53 |
+
|-------|------------|
|
| 54 |
+
| 104 | Horse blood (sample) |
|
| 55 |
+
| 103 | Tomato ketchup (sample) |
|
| 56 |
+
| 106 | Red food dye (sample) |
|
| 57 |
+
| 107 | Fake blood (sample) |
|
| 58 |
+
| 1015 | 100% Cotton Shirt (White) (surface) |
|
| 59 |
+
| 1013 | 100% Cotton Shirt (Black) (surface) |
|
| 60 |
+
| 1012 | Light Fabric Lined Plywood (EF64) – 3 mm (surface) |
|
| 61 |
+
| 1010 | PVC (EF9) Black Plywood – 3 mm (surface) |
|
| 62 |
+
| 1007 | PVC (EF50) Light Woodgrain Plywood – 3 mm (surface) |
|
| 63 |
+
| 1016 | 100% Cotton Shirt (Brown) (surface) |
|
| 64 |
+
| 1011 | Normal Plywood – 3 mm (surface) |
|
| 65 |
+
| 1008 | PVC Walnut Woodgrain Plywood (EF326) – 3 mm (surface) |
|
| 66 |
+
| 1006 | PVC Leather (Black) (surface) |
|
| 67 |
+
| 1005 | PVC Leather (White) (surface) |
|
| 68 |
+
| 1004 | PVC Leather (Brown) (surface) |
|
| 69 |
+
| 1003 | PVC Leather (Red) (surface) |
|
| 70 |
+
| 1019 | Skinny Jeans (Light Blue) (surface) |
|
| 71 |
+
| 1024 | Dri-fit Shirt (Brown) (surface) |
|
| 72 |
+
| 1022 | Dri-fit Shirt (White) (surface) |
|
| 73 |
+
| 1018 | Skinny Jeans (Black) (surface) |
|
| 74 |
+
| 1017 | Skinny Jeans (Grey) (surface) |
|
| 75 |
+
| 1021 | Dri-fit Shirt (Red) (surface) |
|
| 76 |
+
| 1020 | Skinny Jeans (Dark Blue) (surface) |
|
| 77 |
+
| 1009 | PVC White Plywood – 3 mm (surface) |
|
| 78 |
+
| 1023 | Dri-fit Shirt (Black) (surface) |
|
| 79 |
+
|
| 80 |
+
Unlabeled or background regions can be grouped into a single `"background"` class.
|
| 81 |
+
|
| 82 |
+
## Visualization
|
| 83 |
+
|
| 84 |
+

|
| 85 |
+
|
| 86 |
+
## Requirements
|
| 87 |
+
|
| 88 |
+
- [lo-sdk](https://cloud.livingoptics.com/)
|
| 89 |
+
- [datareader](https://github.com/livingoptics/datareader.git)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
## Download instructions
|
| 93 |
+
|
| 94 |
+
You can access this dataset via the [Living Optics Cloud Portal](https://cloud.livingoptics.com/shared-resources?downloadFile=data%2Fannotated-datasets%2FForensics-Full-Dataset.zip).
|
| 95 |
+
|
| 96 |
+
See our [Spatial Spectral ML](https://github.com/livingoptics/spatial-spectral-ml) project for an example of how to train and run a segmentation and spectral classification algoirthm using this dataset.
|
| 97 |
+
|
| 98 |
+
## Usage
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
+
import os
|
| 102 |
+
import numpy as np
|
| 103 |
+
import matplotlib.pyplot as plt
|
| 104 |
+
from lo_dataset_reader import DatasetReader, spectral_coordinate_indices_in_mask, rle_to_mask
|
| 105 |
+
|
| 106 |
+
os.environ["QT_QPA_PLATFORM"] = "xcb"
|
| 107 |
+
|
| 108 |
+
dataset_path = "/path/to/dataset"
|
| 109 |
+
dataset = DatasetReader(dataset_path, display_fig=True)
|
| 110 |
+
|
| 111 |
+
for idx, ((info, scene, spectra, unit, images_extern), (converted_spectra, converted_unit), annotations, library_spectra, labels) in enumerate(dataset):
|
| 112 |
+
for ann_idx, annotation in enumerate(annotations):
|
| 113 |
+
annotation["labels"] = labels
|
| 114 |
+
|
| 115 |
+
# Visualise the annotation on the scene
|
| 116 |
+
dataset.save_annotation_visualisation(scene, annotation, images_extern, ann_idx)
|
| 117 |
+
|
| 118 |
+
# Get spectrum stats from annotation
|
| 119 |
+
stats = annotation.get("extern", {}).get("stats", {})
|
| 120 |
+
label = stats.get("category")
|
| 121 |
+
mean_radiance_spectrum = stats.get("mean_radiance_spectrum")
|
| 122 |
+
mean_reflectance_spectrum = stats.get("mean_reflectance_spectrum")
|
| 123 |
+
|
| 124 |
+
# Get mask and spectral indices
|
| 125 |
+
mask = rle_to_mask(annotation["segmentation"], scene.shape)
|
| 126 |
+
spectral_indices = spectral_coordinate_indices_in_mask(mask, info.sampling_coordinates)
|
| 127 |
+
|
| 128 |
+
# Extract spectra and converted spectra
|
| 129 |
+
spec = spectra[spectral_indices, :]
|
| 130 |
+
if converted_spectra is not None:
|
| 131 |
+
conv_spec = converted_spectra[spectral_indices, :]
|
| 132 |
+
else:
|
| 133 |
+
conv_spec = None
|
| 134 |
+
|
| 135 |
+
# X-axis based on band index or wavelengths (optional)
|
| 136 |
+
x = np.arange(spec.shape[1])
|
| 137 |
+
if stats.get("wavelength_min") is not None and stats.get("wavelength_max") is not None:
|
| 138 |
+
x = np.linspace(stats["wavelength_min"], stats["wavelength_max"], spec.shape[1])
|
| 139 |
+
|
| 140 |
+
# Determine plot layout
|
| 141 |
+
if converted_spectra is not None:
|
| 142 |
+
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
|
| 143 |
+
axs_top = axs[0]
|
| 144 |
+
axs_bottom = axs[1]
|
| 145 |
+
else:
|
| 146 |
+
fig, axs_top = plt.subplots(1, 2, figsize=(12, 4))
|
| 147 |
+
print(f"Warning: No converted_spectra for annotation '{label}'")
|
| 148 |
+
|
| 149 |
+
unit_label = unit.capitalize() if unit else "Radiance"
|
| 150 |
+
|
| 151 |
+
# (1,1) Individual spectra
|
| 152 |
+
for s in spec:
|
| 153 |
+
axs_top[0].plot(x, s, alpha=0.3)
|
| 154 |
+
axs_top[0].set_title(f"{unit_label.capitalize()} Spectra")
|
| 155 |
+
axs_top[0].set_xlabel("Wavelength")
|
| 156 |
+
axs_top[0].set_ylabel(f"{unit_label.capitalize()}")
|
| 157 |
+
|
| 158 |
+
# (1,2) Mean + Min/Max (Before conversion)
|
| 159 |
+
if mean_radiance_spectrum is not None:
|
| 160 |
+
spec_min = np.min(spec, axis=0)
|
| 161 |
+
spec_max = np.max(spec, axis=0)
|
| 162 |
+
axs_top[1].fill_between(x, spec_min, spec_max, color='lightblue', alpha=0.5, label='Min-Max Range')
|
| 163 |
+
axs_top[1].plot(x, mean_radiance_spectrum, color='blue', label=f'Mean {unit_label.capitalize()}')
|
| 164 |
+
axs_top[1].set_title(f"Extern Mean ± Range ({unit_label.capitalize()})")
|
| 165 |
+
axs_top[1].set_xlabel("Wavelength")
|
| 166 |
+
axs_top[1].set_ylabel(f"{unit_label.capitalize()}")
|
| 167 |
+
axs_top[1].legend()
|
| 168 |
+
|
| 169 |
+
# (2,1) and (2,2) Only if converted_spectra is available
|
| 170 |
+
if converted_spectra is not None and conv_spec is not None:
|
| 171 |
+
for s in conv_spec:
|
| 172 |
+
axs_bottom[0].plot(x, s, alpha=0.3)
|
| 173 |
+
axs_bottom[0].set_title(f"{converted_unit} Spectra")
|
| 174 |
+
axs_bottom[0].set_xlabel("Wavelength")
|
| 175 |
+
axs_bottom[0].set_ylabel(f"{converted_unit}")
|
| 176 |
+
|
| 177 |
+
if mean_reflectance_spectrum is not None:
|
| 178 |
+
conv_min = np.min(conv_spec, axis=0)
|
| 179 |
+
conv_max = np.max(conv_spec, axis=0)
|
| 180 |
+
axs_bottom[1].fill_between(x, conv_min, conv_max, color='lightgreen', alpha=0.5, label='Min-Max Range')
|
| 181 |
+
axs_bottom[1].plot(x, mean_reflectance_spectrum, color='green', label=f'Mean {converted_unit}')
|
| 182 |
+
axs_bottom[1].set_title(f"Extern Mean ± Range ({converted_unit})")
|
| 183 |
+
axs_bottom[1].set_xlabel("Wavelength")
|
| 184 |
+
axs_bottom[1].set_ylabel(f"{converted_unit}")
|
| 185 |
+
axs_bottom[1].legend()
|
| 186 |
+
|
| 187 |
+
fig.suptitle(f"Annotation {label}", fontsize=16)
|
| 188 |
+
plt.tight_layout()
|
| 189 |
+
plt.show()
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
For more details on the dataset format and reader see: [dataset format](https://github.com/livingoptics/datareader/blob/main/docs/lo_format_dataset.md)
|
| 193 |
+
|
| 194 |
+
## Citation
|
| 195 |
+
|
| 196 |
+
Raw data is available by request
|